
1

Top-Down Parsing

2

Recursive Descent Parser

Consider the grammar:

 S → c A d

 A → ab | a

 The input string is “cad”

3

Recursive Descent Parser

(Cont.)

 Build parse tree:

 step 1. From start symbol.

 S

 c A d

4

Recursive Descent Parser

(Cont.)

 Step 2. We expand A using the first

alternative A → ab to obtain the following

tree:

 S

 c A d

 a b

5

Recursive Descent Parser

(Cont.)

 Now, we have a match for the second input
symbol “a”, so we advance the input pointer to
“d”, the third input symbol, and compare d
against the next leaf “b”.

 Backtracking
 Since “b” does not match “d”, we report failure and go

back to A to see whether there is another alternative
for A that has not been tried - that might produce a
match!

 In going back to A, we must reset the input pointer to
“a”.

6

Recursive Descent Parser

(Cont.)

 Step 3.

 S

 c A d

 a

7

Creating a top-down parser

 Top-down parsing can be viewed as the

problem of constructing a parse tree for the

input string, starting form the root and

creating the nodes of the parse tree in

preorder.

 An example follows.

8

Creating a top-down parser

(Cont.)

Given the grammar :

 E → TE’

 E’ → +TE’ | λ

 T → FT’

 T’ → *FT’ | λ

 F → (E) | id

 The input: id + id * id

9

Creating a top-down parser

(Cont.)

10

Top-down parsing

 A top-down parsing program consists of a set of

procedures, one for each non-terminal.

 Execution begins with the procedure for the start

symbol, which halts and announces success if its

procedure body scans the entire input string.

11

Top-down parsing

A typical procedure for non-terminal A in a top-down parser:

 boolean A() {

 choose an A-production, A → X1 X2 … Xk;

 for (i= 1 to k) {

 if (Xi is a non-terminal)

 call procedure Xi();

 else if (Xi matches the current input token “a”)

 advance the input to the next token;

 else /* an error has occurred */;

 }

 }

12

Top-down parsing

Given a grammar:

 input → expression

 expression → term rest_expression

 term → ID | parenthesized_expression

 parenthesized_expression → ‘(‘ expression ‘)’

 rest_expression → ‘+’ expression | λ

13

Top-down parsing

 For example:

 input:

 ID + (ID + ID)

14

Top-down parsing

Build parse tree:

start from start symbol to invoke:

 int input (void)

 input

 expression $

Next, invoke expression()

15

Top-down parsing

 input

 expression $

 term rest_expression

Next, invoke term()

16

Top-down parsing

 input

 expression $

 term rest_expression

 ID

 select term → ID (matching input string “ID”)

17

Top-down parsing

Invoke rest_expression()

 input

 expression $

 term rest_expression

 ID + expression

18

Top-down parsing

The parse tree is:

 input

 expression $

 term rest_expression

 ID + expression

 term rest_expression

 parenthesized_expression λ

 (expression)

 term rest_expression

 ID + expression

 term rest_expression

 ID λ

19

LL(1) Parsers
 The class of grammars for which we can

construct predictive parsers looking k symbols
ahead in the input is called the LL(k) class.

 Predictive parsers, that is, recursive-descent
parsers without backtracking, can be constructed
for the LL(1) class grammars.

 The first “L” stands for scanning input from left to
right. The second “L” for producing a leftmost
derivation. The “1” for using one input symbol of
look-ahead at each step to make parsing
decisions.

20

LL(1) Parsers (Cont.)

 A → α | β are two distinct productions of

grammar G, G is LL(1) if the following 3

conditions hold:

1. FIRST(α) cannot contain any terminal in FIRST(β).

2. At most one of α and β can derive λ.

3. if β →* λ, FIRST(α) cannot contain

 any terminal in FOLLOW(A).

 if α →* λ, FIRST(β) cannot contain

 any terminal in FOLLOW(A).

Nullability

 A nonterminal A is nullable if

A * .

 Clearly, A is nullable if it has a production

A .

 But A is also nullable if there are, for example,

productions

 A BC.

 B A | aC | .

 C aB | Cb | .

Nullability

 In other words, A is nullable if there is a

production

A ,

 or there is a production

A B1B2…Bn,

 where B1, B2, ..., Bn are nullable.

Nullability

 In the grammar

 E T E'

 E' + T E' | .

 T F T'

 T' * F T' | .

 F (E) | id | num

 E' and T' are nullable.

 E, T, and F are not nullable.

Summary

Nonterminal Nullable

E No

E' Yes

T No

T' Yes

F No

FIRST and FOLLOW

Given a grammar G, we may define the

functions FIRST and FOLLOW on the

strings of symbols of G.

 FIRST() is the set of all terminals that may

appear as the first symbol in a replacement

string of .

 FOLLOW() is the set of all terminals that

may follow in a derivation.

FIRST

 For a grammar symbol X, FIRST(X) is

defined as follows.

 For every terminal X, FIRST(X) = {X}.

 For every nonterminal X, if X Y1Y2…Yn is a

production, then

• FIRST(Y1) FIRST(X).

• Furthermore, if Y1, Y2, …, Yk are nullable, then

FIRST(Yk + 1) FIRST(X).

FIRST

We are concerned with FIRST(X) only for

the nonterminals of the grammar.

 FIRST(X) for terminals is trivial.

 According to the definition, to determine

FIRST(A), we must inspect all productions

that have A on the left.

Example: FIRST

 Let the grammar be

 E T E'

 E' + T E' | .

 T F T'

 T' * F T' | .

 F (E) | id | num

Example: FIRST

 Find FIRST(E).

 E occurs on the left in only one production

 E T E'.

 Therefore, FIRST(T) FIRST(E).

 Furthermore, T is not nullable.

 Therefore, FIRST(E) = FIRST(T).

 We have yet to determine FIRST(T).

Example: FIRST

 Find FIRST(T).

 T occurs on the left in only one production

 T F T'.

 Therefore, FIRST(F) FIRST(T).

 Furthermore, F is not nullable.

 Therefore, FIRST(T) = FIRST(F).

 We have yet to determine FIRST(F).

Example: FIRST

 Find FIRST(F).

 FIRST(F) = {(, id, num}.

 Therefore,

 FIRST(E) = {(, id, num}.

 FIRST(T) = {(, id, num}.

Example: FIRST

 Find FIRST(E').

 FIRST(E') = {+}.

 Find FIRST(T').

 FIRST(T') = {*}.

Summary

Nonterminal Nullable FIRST

E No {(, id, num}

E' Yes {+}

T No {(, id, num}

T' Yes {*}

F No {(, id, num}

FOLLOW

 For a grammar symbol X, FOLLOW(X) is

defined as follows.

 If S is the start symbol, then $ FOLLOW(S).

 If A B is a production, then FIRST()

FOLLOW(B).

 If A B is a production, or A B is a

production and is nullable, then FOLLOW(A)

 FOLLOW(B).

FOLLOW

We are concerned about FOLLOW(X) only

for the nonterminals of the grammar.

 According to the definition, to determine

FOLLOW(A), we must inspect all

productions that have A on the right.

Example: FOLLOW

 Let the grammar be

 E T E'

 E' + T E' | .

 T F T'

 T' * F T' | .

 F (E) | id | num

Example: FOLLOW

 Find FOLLOW(E).

 E is the start symbol, therefore $

FOLLOW(E).

 E occurs on the right in only one production.

F (E).

 Therefore FOLLOW(E) = {$,)}.

Example: FOLLOW

 Find FOLLOW(E').

 E' occurs on the right in two productions.

 E T E'

 E' + T E'.

 Therefore, FOLLOW(E') = FOLLOW(E) = {$,

)}.

Example: FOLLOW

 Find FOLLOW(T).

 T occurs on the right in two productions.

 E T E'

 E' + T E'.

 Therefore, FOLLOW(T) contains FIRST(E') =

{+}.

 However, E' is nullable, therefore it also

contains FOLLOW(E) = {$,)} and

FOLLOW(E') = {$,)}.

 Therefore, FOLLOW(T) = {+, $,)}.

Example: FOLLOW

 Find FOLLOW(T').

 T' occurs on the right in two productions.

 T F T'

 T' * F T'.

 Therefore, FOLLOW(T') = FOLLOW(T) = {$,),

+}.

Example: FOLLOW

 Find FOLLOW(F).

 F occurs on the right in two productions.

 T F T'

 T' * F T'.

 Therefore, FOLLOW(F) contains FIRST(T') =

{*}.

 However, T' is nullable, therefore it also

contains FOLLOW(T) = {+, $,)} and

FOLLOW(T') = {$,), +}.

 Therefore, FOLLOW(F) = {*, $,), +}.

Summary

Nonterminal Nullable FIRST FOLLOW

E No {(, id, num} {$,)}

E' Yes {+} {$,)}

T No {(, id, num} {$,), +}

T' Yes {*} {$,), +}

F No {(, id, num} {*, $,), +}

Exercise

 The grammar

 R R R | RR | R* | (R) | a | b

 generates all regular expressions on the

alphabet {a, b}.

Using the result of the exercise from the

previous lecture, find FIRST(X) and

FOLLOW(X) for each nonterminal X in the

grammar.

44

Construction of a predictive

parsing table

 The following rules are used to construct

the predictive parsing table:

 1. for each terminal a in FIRST(α),

 add A → α to matrix M[A,a]

 2. if λ is in FIRST(α), then

 for each terminal b in FOLLOW(A),

 add A → α to matrix M[A,b]

45

LL(1) Parsers (Cont.)

Given the grammar:

 input → expression 1

 expression → term rest_expression 2

 term → ID 3

 | parenthesized_expression 4

 parenthesized_expression → ‘(‘ expression ‘)’ 5

 rest_expression → ‘+’ expression 6

 | λ 7

 Build the parsing table.

46

LL(1) Parsers (Cont.)

FIRST (input) = FIRST(expression)

 =FIRST (term) = {ID, ‘(‘ }

FIRST (parenthesized_expression) = { ‘(‘ }

FIRST (rest_expression) = { ‘+’ λ}

FOLLOW (input) = {$ }

FOLLOW (expression) = {$ ‘)’ }

FOLLOW (term) =

FOLLOW (parenthesized_expression) = {$ ‘+’ ‘)’}

FOLLOW (rest_expression) = {$ ‘)’}

47

LL(1) Parsers (Cont.)

Non-terminal Input symbol

ID + () $

Input 1 1

Expression 2 2

Term 3 4

parenthesized_e

xpression

5

rest_expression 6 7 7

48

Model of a table-driven

predictive parser

49

Predictive parsing algorithm
Set input pointer (ip) to the first token a;

Push $ and start symbol to the stack.

Set X to the top stack symbol;

while (X != $) { /*stack is not empty*/

 if (X is token a) pop the stack and advance ip;

 else if (X is another token) error();

 else if (M[X,a] is an error entry) error();

 else if (M[X,a] = X → Y1Y2…Yk) {

 output the production X → Y1Y2…Yk;

 pop the stack; /* pop X */

 /* leftmost derivation*/

 push Yk,Yk-1,…, Y1 onto the stack, with Y1 on top;

 }

 set X to the top stack symbol Y1;

} // end while

50

LL(1) Parsers (Cont.)

Given the grammar:

 E → TE’ 1

 E’ → +TE’ 2

 E’ → λ 3

 T → FT’ 4

 T’ → *FT’ 5

 T’ → λ 6

 F → (E) 7

 F → id 8

51

LL(1) Parsers (Cont.)

FIRST(F) = FIRST(T) = FIRST(E) = {（, id }

FIRST(E’) = {＋, λ}

FIRST(T’) = { ﹡, λ}

FOLLOW(E) = FOLLOW(E’) = {）, ＄}

FOLLOW(T) = FOLLOW(T’) = {＋, ）, ＄}

FOLLOW(F) = {＋, ＊, ）, ＄}

52

LL(1) Parsers (Cont.)

Non-

terminal

Input symbols

Id + * () $

E 1 1

E’ 2 3 3

T 4 4

T’ 6 5 6 6

F 8 7

53

LL(1) Parsers (Cont.)

Stack Input Output

$E id + id * id $

$E’T id + id * id $ E → TE’

$E’T’F id + id * id $ T → FT’

$E’T’id id + id * id $ F → id

$E’T’ + id * id $ match id

$E’ + id * id $ T’ → λ

$E’T+ + id * id $ E’ → +TE’

54

LL(1) Parsers (Cont.)

Stack Input Output

$E’T id * id $ match +

$E’T’F id * id $ T → FT’

$E’T’id id * id $ F → id

$E’T’ * id $ match id

$E’T’F* * id $ T’ → *FT’

$E’T’F id $ match *

$E’T’id id $ F → id

$E’T’ $ match id

$E’ $ T’ → λ

$ $ E’ → λ

Common Prefix

In Fig. 5.12(see the next slide), the common

prefix:

 if Expr then StmtList (R1,R2)

makes looking ahead to distinguish R1 from

R2 hard.

Just use Fig. 5.13(see the next slide) to

factor it and “var”(R5,6)

The resulting grammar is in Fig. 5.14.
55

Left Recursion

 A production is left recursive

 if its LHS symbol is the first symbol of

 its RHS.

 In fig. 5.14, the production

 StmtList→ StmtList ; Stmt

 StmtList is left-recursion.

58

Left Recursion (Cont.)

59

Left Recursion (Cont.)

Grammars with left-recursive productions

can never be LL(1).

 Some look-ahead symbol t predicts the

application of the left-recursive production

 A → Aβ.

 with recursive-descent parsing, the application

of this production will cause

 procedure A to be invoked infinitely.

Thus, we must eliminate left-recursion.

60

Left Recursion (Cont.)
 Consider the following left-recursive rules.

 1. A → A α

 2. | β the rules produce strings like β α α

 we can change the grammar to:

 1. A → X Y

 2. X → β

 3. Y → α Y

 4. | λ the rules also produce strings like β α α

The EliminateLeftRecursion algorithm is shown in fig. 5.15.

Applying it to the grammar in fig. 5.14 results in fig. 5.16.

61

Left Recursion (Cont.)

62

1

2

3

4

5

Left Recursion (Cont.)
Now, we trace the algorithm with the grammar below:

 (4) StmtList → StmtList ; Stmt

 (5) | Stmt

first, the input is (4) StmtList → StmtList ; Stmt

because RHS(4) = StmtList α it is left-recursive (marker 1)

 create two non-terminals X, and Y

 for rule (4) (marker 2)

 as StmtList = StmtList,

 create StmtList → XY (marker 3)

 for rule (5) (marker 2)

 as StmtList != Stmt

 create X → Stmt (marker 4)

 finally, create Y → ; Stmt and Y → λ (marker 5)

Left Recursion (Cont.)

64

65

 Thank you

