Lexical Analysis

1

The Reason Why Lexical Analysis is a Separate Phase

\triangleright Simplifies the design of the compiler

 LL(1) or LR(1) parsing with 1 token lookahead would not be possible (multiple characters/tokens to match)

 \triangleright Provides efficient implementation

- Systematic techniques to implement lexical analyzers by hand or automatically from specifications
- Stream buffering methods to scan input

 \triangleright Improves portability

 Non-standard symbols and alternate character encodings can be normalized (e.g. UTF8, trigraphs)

Interaction of the Lexical Analyzer with the Parser

Attributes of Tokens

Tokens, Patterns, and Lexemes

A *token* is a classification of lexical units

- For example: **id** and **num**
- *Lexemes* are the specific character strings that make up a token
	- For example: **abc** and **123**

 Patterns are rules describing the set of lexemes belonging to a token

 For example: "*letter followed by letters and digits"* and "*non-empty sequence of digits*"

Specification of Patterns for Tokens: *Definitions*

- \triangleright An *alphabet* Σ is a finite set of symbols (characters)
- A *string s* is a finite sequence of symbols from Σ
	- $|s|$ denotes the length of string *s*
	- ε denotes the empty string, thus ε = 0

 A *language* is a specific set of strings over some fixed alphabet Σ

Specification of Patterns for Tokens: *String Operations* The *concatenation* of two strings *x* and *y* is denoted by *xy* The *exponentation* of a string *s* is defined **by**

> $S^0 = \varepsilon$ $s^{i} = s^{i-1}s$ for $i > 0$

note that $s\epsilon = \epsilon s = s$

Specification of Patterns for Tokens: *Language Operations Union* $L \cup M = \{s \mid s \in L \text{ or } s \in M\}$ *Concatenation* $LM = \{xy \mid x \in L \text{ and } y \in M\}$ *Exponentiation* $L^0 = \{\varepsilon\};\quad L^i = L^{i-1}L$ *Kleene closure* $L^* = \cup_{i=0,\ldots,\infty} L^i$ *Positive closure* $L^{+} = \cup_{i=1,...,\infty} L^{i}$

Specification of Patterns for Tokens: *Regular Expressions* **> Basis symbols:** • ϵ is a regular expression denoting language $\{\epsilon\}$ • $a \in \Sigma$ is a regular expression denoting $\{a\}$ If *r* and *s* are regular expressions denoting languages *L*(*r*) and *M*(*s*) respectively, then • $r|s$ is a regular expression denoting $L(r) \cup M(s)$ *rs* is a regular expression denoting *L*(*r*)*M*(*s*) *r* * is a regular expression denoting *L*(*r*) * (*r*) is a regular expression denoting *L*(*r*) \triangleright A language defined by a regular expression is called a *regular set*

Specification of Patterns for Tokens: *Regular Definitions* Regular definitions introduce a naming convention with name-to-regular-expression bindings:

$$
\begin{array}{c} d_1 \rightarrow r_1 \\ d_2 \rightarrow r_2 \end{array}
$$

 $d_n \rightarrow r_n$ where each r_i is a regular expression over $\Sigma \cup \{d^{}_1,~d^{}_2,~...,~d^{}_{i\text{-}1}\}$ \triangleright Any d_j in r_j can be textually substituted in r_j to obtain an equivalent set of definitions

Specification of Patterns for Tokens: *Regular Definitions* Example:

 $\textsf{letter} \rightarrow \texttt{A} \text{ } | \texttt{B} | \dots | \texttt{Z} | \texttt{a} | \texttt{b} | \dots | \texttt{z}$ **digit 01**…**9** ■ **id** → letter (letter | digit)*

 Regular definitions cannot be recursive: **digits digit digitsdigit** *wrong!*

Specification of Patterns for Tokens: *Notational Shorthand* \triangleright The following shorthands are often used:

$$
r^{+} = rr^{*}
$$

$$
r? = r| \varepsilon
$$

$$
[\mathbf{a} \mathbf{-z}] = \mathbf{a} | \mathbf{b} | \mathbf{c} | \dots | \mathbf{z}
$$

 Examples: $\text{digit} \rightarrow [0-9]$ **num digit**⁺ (**. digit**⁺)? (**E** (**+-**)? **digit**⁺)?

Regular Definitions and **Grammars**

 $\bf{num} \rightarrow \bf{digit}^+($. \bf{digit}^+ $)?$ (\bf{E} (+ | -)? \bf{digit})? $stmt \rightarrow \textbf{if} \text{ expr} \textbf{then} \text{stmt}$ **if** *expr* **then** *stmt* **else** *stmt* $\begin{array}{c|c} \hline \end{array}$ $\begin{array}{c|c} \hline \end{array}$ *expr term* **relop** *term term* $term \rightarrow id$ **num** $i\overline{f}$ \rightarrow $i\overline{f}$ $then \rightarrow then$ **else else** $relop \rightarrow \left\langle \left| \left| \left| \left| \left| \left| \left| \left| \right| \right| \right| \right| \right| \right| \right| \right\rangle = \left| \right| \right| \right| \right| \right| \right| \right| \right| \right| \right|$ \blacksquare **id** \rightarrow letter (letter \blacksquare digit $)$ ^{*} Grammar Regular definitions

Coding Regular Definitions in *Transition Diagrams*

Coding Regular Definitions in Transition Diagrams: Code

```
token nexttoken()
{ while (1) {
     switch (state) {
     case 0: c = nextchar();
        if (c==blank || c==tab || c==newline) {
          state = 0;
          lexeme_beginning++;
 }
        else if (c=='<') state = 1;
        else if (c=='=') state = 5;
        else if (c=='>') state = 6;
        else state = fail();
        break;
      case 1:
      case 9: c = nextchar();
        if (isletter(c)) state = 10;
        else state = fail();
        break;
      case 10: c = nextchar();
        if (isletter(c)) state = 10;
        else if (isdigit(c)) state = 10;
        else state = 11;
        break;
```
int fail() { forward = token_beginning; swith (start) { case 0: start = 9; break; case 9: start = 12; break; case 12: start = 20; break; case 20: start = 25; break; case 25: recover(); break; default: /* error */ } return start; Decides the next start state to check

}

Design of a Lexical Analyzer **Generator**

 \triangleright Translate regular expressions to NFA \triangleright Translate NFA to an efficient DFA

Nondeterministic Finite Automata

 \triangleright An NFA is a 5-tuple (S, Σ , δ , S_0 , F) where

S is a finite set of *states* Σ is a finite set of symbols, the *alphabet* δ is a *mapping* from $S \times \Sigma$ to a set of states $s_0 \in S$ is the *start state* $F \subset S$ is the set of *accepting (or final) states*

Transition Graph

 \triangleright An NFA can be diagrammatically represented by a labeled directed graph called a *transition graph*

Transition Table

 \triangleright The mapping δ of an NFA can be represented in a *transition table*

 $\delta(0,\mathbf{a}) = \{0,1\}$ $\delta(0,\mathbf{b}) = \{0\}$ $\delta(1, \mathbf{b}) = \{2\}$ $\delta(2, \mathbf{b}) = \{3\}$

The Language Defined by an **NFA**

- An NFA *accepts* an input string *x* if and only if there is some path with edges labeled with symbols from *x* in sequence from the start state to some accepting state in the transition graph
- A state transition from one state to another on the path is called a *move*

 The *language defined by* an NFA is the set of input strings it accepts, such as $(a|b)^*$ abb for the example NFA

Design of a Lexical Analyzer Generator: RE to NFA to DFA

Lex specification with regular expressions

*p*1 *p*2 … *pn*

NFA

From Regular Expression to NFA (Thompson's Construction)

Combining the NFAs of a Set of Regular Expressions

Simulating the Combined NFA Example 1

3

7

7

When last state is accepting: execute actign Must find the *longest match*: Continue until no further moves are possible

Simulating the Combined NFA Example 2

7

first action given in the Lex specification is executed When two or more accepting states are reached, the

Deterministic Finite Automata

 A *deterministic finite automaton* is a special case of an NFA

- \bullet No state has an ε -transition
- For each state *s* and input symbol *a* there is at most one edge labeled *a* leaving *s*

 \triangleright Each entry in the transition table is a single state

- At most one path exists to accept a string
- Simulation algorithm is simple

Example DFA

A DFA that accepts $(a|b)^*$ abb

Conversion of an NFA into a DFA

 The *subset construction algorithm* converts an NFA into a DFA using: ε -closure(s) = { s } \cup { $t |$ $s \rightarrow_{\varepsilon} ... \rightarrow_{\varepsilon} t$ } ε -closure(*T*) = $\cup_{s \in \mathcal{T}} \varepsilon$ -closure(*s*) $move(T, a) = \{t \mid s \rightarrow a \}$ and $s \in T$ \triangleright The algorithm produces: *Dstates* is the set of states of the new DFA consisting of sets of states of the NFA *Dtran* is the transition table of the new DFA

-closure and *move* Examples

 $\mathcal{E}-closure({0}) = {0,1,3,7}$ *move*(${0,1,3,7}$,**a**) = ${2,4,7}$ ϵ -*closure*({2,4,7}) = {2,4,7} $move({2,4,7},**a**) = {7}$ ϵ -*closure*({7}) = {7} *move*($\{7\}$,**b**) = $\{8\}$ ϵ -*closure*({8}) = {8} $move({8}, a) = \emptyset$

29

Simulating an NFA using *-closure* and *move*

 $S := \varepsilon\text{-}closure(\{s_0\})$ $S_{prev} := \emptyset$ $a := nextchar()$ **while** $S \neq \emptyset$ **do** $S_{prev} := S$ $S := \varepsilon$ -*closure*(*move*(*S,a*)) $a := nextchar()$ **end do if** $S_{prev} \cap F \neq \emptyset$ then **execute** *action in* S_{prev} **return** " yes " **else return** " no "

The Subset Construction Algorithm

Initially, ε -*closure*(s ₀) is the only state in *Dstates* and it is unmarked **while** there is an unmarked state *T* in *Dstates* **do** mark *T* **for** each input symbol $a \in \Sigma$ **do** $U := \varepsilon$ -*closure*(*move*(*T,a*)) **if** *U* is not in *Dstates* **then** add *U* as an unmarked state to *Dstates* **end if** $Dtran[T,a] := U$ **end do end do**

Subset Construction Example

 $C = \{1,2,4,5,6,7\}$

 $D = \{1, 2, 4, 5, 6, 7, 9\}$

 $\overline{E} = \{1, 2, 4, 5, 6, 7, 10\}$

 \mathbf{D} \longrightarrow \mathbf{E}

b

a

A

B

a

a

b

a

start

32

Subset Construction Example 2

 $F = \{6, 8\}_{33}$ *Dstates* $A = \{0, 1, 3, 7\}$ $B = \{2,4,7\}$ $C = \{8\}$ $D = \{7\}$ $E = \{5, 8\}$

Minimizing the Number of States of a DFA

34

From Regular Expression to DFA Directly

 The "*important states"* of an NFA are those without an ε -transition, that is if $move({s}, a) \neq \emptyset$ for some *a* then *s* is an important state

 \triangleright The subset construction algorithm uses only the important states when it determines *-closure*(*move*(*T,a*))

From Regular Expression to DFA Directly (Algorithm) Augment the regular expression *r* with a special end symbol # to make accepting states important: the new expression is *r*# Construct a syntax tree for *r*# \triangleright Traverse the tree to construct functions *nullable*, *firstpos*, *lastpos*, and *followpos*

From Regular Expression to DFA Directly: Syntax Tree of (**a**|**b**)***abb#**

From Regular Expression to DFA Directly: Annotating the Tree

- *nullable*(*n*): the subtree at node *n* generates languages including the empty string
- \triangleright firstpos(n): set of positions that can match the first symbol of a string generated by the subtree at node *n*
- *lastpos*(*n*): the set of positions that can match the last symbol of a string generated be the subtree at node *n*
- *followpos*(*i*): the set of positions that can follow position *i* in the tree

From Regular Expression to DFA Directly: Annotating the Tree

From Regular Expression to DFA Directly: Syntax Tree of (**a**|**b**)***abb#**

From Regular Expression to DFA Directly: *followpos*

for each node *n* in the tree **do if** *n* is a cat-node with left child c_1 and right child c_2 then **for** each *i* in $lastpos(c_1)$ **do** $\textit{followpos}(i) := \textit{followpos}(i) \cup \textit{firstpos}(c_2)$ **end do else if** *n* is a star-node **for** each *i* in *lastpos*(*n*) **do** $followpos(i) := followingfor(1) \cup firstpos(n)$ **end do end if end do**

From Regular Expression to DFA Directly: Algorithm

*s*0 := *firstpos*(*root*) where *root* is the root of the syntax tree *Dstates* := $\{s_0\}$ and is unmarked **while** there is an unmarked state *T* in *Dstates* **do** mark *T*

42 **for** each input symbol $a \in \Sigma$ **do** let *U* be the set of positions that are in *followpos*(*p*) for some position *p* in *T*, such that the symbol at position *p* is *a* **if** *U* is not empty and not in *Dstates* **then** add *U* as an unmarked state to *Dstates* **end if** $Dtran[T,a] := U$ **end do end do**

From Regular Expression to DFA Directly: Example

Time-Space Tradeoffs

Thank you