
Lexical Analysis

1

The Reason Why Lexical

Analysis is a Separate Phase
 Simplifies the design of the compiler

 LL(1) or LR(1) parsing with 1 token lookahead would
not be possible (multiple characters/tokens to match)

 Provides efficient implementation
 Systematic techniques to implement lexical analyzers

by hand or automatically from specifications

 Stream buffering methods to scan input

 Improves portability
 Non-standard symbols and alternate character

encodings can be normalized (e.g. UTF8, trigraphs)

2

Interaction of the Lexical

Analyzer with the Parser

3

Lexical

Analyzer
Parser

Source

Program

Token,

tokenval

Symbol Table

Get next

token

error error

Attributes of Tokens

4

Lexical analyzer y := 31 + 28*x

Parser

<id, “y”> <assign, > <num, 31> <‘+’, > <num, 28> <‘*’, > <id, “x”>

token

(lookahead)

tokenval

(token attribute)

Tokens, Patterns, and Lexemes

 A token is a classification of lexical units

 For example: id and num

 Lexemes are the specific character strings that

make up a token

 For example: abc and 123

 Patterns are rules describing the set of lexemes

belonging to a token

 For example: “letter followed by letters and digits” and

“non-empty sequence of digits”

5

Specification of Patterns for

Tokens: Definitions
 An alphabet is a finite set of symbols

(characters)

 A string s is a finite sequence of symbols
from

 s denotes the length of string s

 denotes the empty string, thus = 0

 A language is a specific set of strings over
some fixed alphabet

6

Specification of Patterns for

Tokens: String Operations
 The concatenation of two strings x and y is

denoted by xy

 The exponentation of a string s is defined

by

 s0 =

 si = si-1s for i > 0

note that s = s = s

7

Specification of Patterns for

Tokens: Language Operations
 Union

 L M = {s s L or s M}

 Concatenation
 LM = {xy x L and y M}

 Exponentiation
 L0 = {}; Li = Li-1L

 Kleene closure
 L* = i=0,…, Li

 Positive closure
 L+ = i=1,…, Li

8

Specification of Patterns for

Tokens: Regular Expressions
 Basis symbols:

 is a regular expression denoting language {}

 a is a regular expression denoting {a}

 If r and s are regular expressions denoting
languages L(r) and M(s) respectively, then
 rs is a regular expression denoting L(r) M(s)

 rs is a regular expression denoting L(r)M(s)

 r* is a regular expression denoting L(r)*

 (r) is a regular expression denoting L(r)

 A language defined by a regular expression is
called a regular set

9

Specification of Patterns for

Tokens: Regular Definitions
 Regular definitions introduce a naming

convention with name-to-regular-expression

bindings:

 d1 r1

 d2 r2

 …

 dn rn

where each ri is a regular expression over

 {d1, d2, …, di-1 }

 Any dj in ri can be textually substituted in ri to

obtain an equivalent set of definitions
10

Specification of Patterns for

Tokens: Regular Definitions
 Example:

letter AB…Zab…z
 digit 01…9
 id letter (letterdigit)*

Regular definitions cannot be recursive:

digits digit digitsdigit wrong!

11

Specification of Patterns for

Tokens: Notational Shorthand
 The following shorthands are often used:

 r+ = rr*

 r? = r
 [a-z] = abc…z

 Examples:
digit [0-9]

num digit+ (. digit+)? (E (+-)? digit+)?

12

Regular Definitions and

Grammars

13

stmt if expr then stmt

 if expr then stmt else stmt

expr term relop term

 term

term id

 num
 if if

 then then

 else else

relop < <= <> > >= =

 id letter (letter | digit)*

 num digit+ (. digit+)? (E (+-)? digit+)?

Grammar

Regular definitions

Coding Regular Definitions in

Transition Diagrams

14

0 2 1

6

3

4

5

7

8

return(relop, LE)

return(relop, NE)

return(relop, LT)

return(relop, EQ)

return(relop, GE)

return(relop, GT)

start <

=

>

=

>

=

other

other

*

*

9
start letter

10 11 * other

letter or digit

return(gettoken(),

 install_id())

relop <<=<>>>==

id letter (letterdigit)*

Coding Regular Definitions in

Transition Diagrams: Code

15

token nexttoken()

{ while (1) {

 switch (state) {

 case 0: c = nextchar();

 if (c==blank || c==tab || c==newline) {

 state = 0;

 lexeme_beginning++;

 }

 else if (c==‘<’) state = 1;

 else if (c==‘=’) state = 5;

 else if (c==‘>’) state = 6;
 else state = fail();

 break;

 case 1:

 …

 case 9: c = nextchar();

 if (isletter(c)) state = 10;

 else state = fail();

 break;

 case 10: c = nextchar();

 if (isletter(c)) state = 10;

 else if (isdigit(c)) state = 10;

 else state = 11;

 break;

 …

int fail()

{ forward = token_beginning;

 swith (start) {

 case 0: start = 9; break;

 case 9: start = 12; break;

 case 12: start = 20; break;

 case 20: start = 25; break;

 case 25: recover(); break;

 default: /* error */

 }

 return start;

}

Decides the

next start state

to check

Design of a Lexical Analyzer

Generator
 Translate regular expressions to NFA

 Translate NFA to an efficient DFA

16

 regular

expressions
NFA DFA

Simulate NFA

to recognize

tokens

Simulate DFA

to recognize

tokens

Optional

Nondeterministic Finite

Automata
 An NFA is a 5-tuple (S, , , s0, F) where

S is a finite set of states

 is a finite set of symbols, the alphabet

 is a mapping from S to a set of states

s0 S is the start state

F S is the set of accepting (or final)

states

17

Transition Graph

 An NFA can be diagrammatically

represented by a labeled directed graph

called a transition graph

18

0
start a

1 3 2
b b

a

b

S = {0,1,2,3}

 = {a,b}

s0 = 0

F = {3}

Transition Table

 The mapping of an NFA can be

represented in a transition table

19

State
Input

a

Input

b

0 {0, 1} {0}

1 {2}

2 {3}

(0,a) = {0,1}

(0,b) = {0}

(1,b) = {2}

(2,b) = {3}

The Language Defined by an

NFA
 An NFA accepts an input string x if and only if

there is some path with edges labeled with

symbols from x in sequence from the start state

to some accepting state in the transition graph

 A state transition from one state to another on

the path is called a move

 The language defined by an NFA is the set of
input strings it accepts, such as (ab)*abb for

the example NFA

20

Design of a Lexical Analyzer

Generator: RE to NFA to DFA

21

s0

N(p1)

N(p2)
start

N(pn)

…

p1 { action1 }

p2 { action2 }

…

pn { actionn }

action1

action2

actionn

Lex specification with

regular expressions

NFA

DFA

Subset construction

From Regular Expression to

NFA (Thompson’s Construction)

22

N(r2) N(r1)

f i

f
a

i

f i

N(r1)

N(r2)

start

start

start

f i
start

N(r) f i
start

a

r1r2

r1r2

r*

Combining the NFAs of a Set of

Regular Expressions

23

2
a

1
start

6
a

3
start

4 5
b b

8 b 7
start

a b

a { action1 }

abb { action2 }

a*b+ { action3 }

2
a

1

6
a

3 4 5
b b

8 b 7

a b

0
start

Simulating the Combined NFA

Example 1

24

2
a

1

6
a

3 4 5
b b

8 b 7

a b

0
start

0

1

3

7

2

4

7

7 8

Must find the longest match:

Continue until no further moves are possible

When last state is accepting: execute action

action1

action2

action3

a b a a
none
action3

Simulating the Combined NFA

Example 2

25

2
a

1

6
a

3 4 5
b b

8 b 7

a b

0
start

0

1

3

7

2

4

7

5

8

6

8

When two or more accepting states are reached, the

first action given in the Lex specification is executed

action1

action2

action3

a b b a
none
action2

action3

Deterministic Finite Automata

 A deterministic finite automaton is a special case

of an NFA

 No state has an -transition

 For each state s and input symbol a there is at most

one edge labeled a leaving s

 Each entry in the transition table is a single state

 At most one path exists to accept a string

 Simulation algorithm is simple

26

Example DFA

27

0
start a

1 3 2
b b

b
b

a

a

a

A DFA that accepts (ab)*abb

Conversion of an NFA into a

DFA
 The subset construction algorithm converts an

NFA into a DFA using:

 -closure(s) = {s} {t s … t}

 -closure(T) = sT -closure(s)

 move(T,a) = {t s a t and s T}

 The algorithm produces:

Dstates is the set of states of the new DFA

consisting of sets of states of the NFA

Dtran is the transition table of the new DFA

28

-closure and move Examples

29

2
a

1

6
a

3 4 5
b b

8 b 7

a b

0
start

-closure({0}) = {0,1,3,7}

move({0,1,3,7},a) = {2,4,7}

-closure({2,4,7}) = {2,4,7}
move({2,4,7},a) = {7}

-closure({7}) = {7}
move({7},b) = {8}

-closure({8}) = {8}
move({8},a) =

0

1

3

7

2

4

7

7 8

a b a a
none

Also used to simulate NFAs (!)

Simulating an NFA using

-closure and move

30

S := -closure({s0})

Sprev :=

a := nextchar()

while S do

 Sprev := S

 S := -closure(move(S,a))

 a := nextchar()

end do

if Sprev F then

 execute action in Sprev

 return “yes”

else return “no”

The Subset Construction

Algorithm

31

Initially, -closure(s0) is the only state in Dstates and it is unmarked

while there is an unmarked state T in Dstates do

 mark T

 for each input symbol a do

 U := -closure(move(T,a))

 if U is not in Dstates then

 add U as an unmarked state to Dstates

 end if

 Dtran[T,a] := U

 end do

end do

Subset Construction Example

1

32

0
start a

1 10

2

b

b

a

b

3

4 5

6 7 8 9

A
start

B

C

D E

b

b

b

b

b

a
a

a

a

Dstates

A = {0,1,2,4,7}

B = {1,2,3,4,6,7,8}

C = {1,2,4,5,6,7}

D = {1,2,4,5,6,7,9}

E = {1,2,4,5,6,7,10}

a

Subset Construction Example

2

33

2
a

1

6
a

3 4 5
b b

8 b 7

a b

0
start

a1

a2

a3

Dstates

A = {0,1,3,7}

B = {2,4,7}

C = {8}

D = {7}

E = {5,8}

F = {6,8}

A
start

a

D

b

b

b

a
b

b
B

C

E F

a

b

a1

a3

a3 a2 a3

Minimizing the Number of

States of a DFA

34

A
start

B

C

D E

b

b

b

b

b

a
a

a

a

a

AC
start

B D E
b b

b

a

b

a

a a

From Regular Expression to

DFA Directly
 The “important states” of an NFA are

those without an -transition, that is if

move({s},a) for some a then s is an

important state

 The subset construction algorithm uses

only the important states when it

determines

-closure(move(T,a))

35

From Regular Expression to

DFA Directly (Algorithm)
 Augment the regular expression r with a

special end symbol # to make accepting

states important: the new expression is r#

Construct a syntax tree for r#

 Traverse the tree to construct functions

nullable, firstpos, lastpos, and followpos

36

From Regular Expression to DFA

Directly: Syntax Tree of (a|b)*abb#

37

*

|

1

a
2

b

3
a

4
b

5

b

6

concatenation

closure

alternation

position

number

(for leafs)

From Regular Expression to DFA

Directly: Annotating the Tree

 nullable(n): the subtree at node n generates
languages including the empty string

 firstpos(n): set of positions that can match the
first symbol of a string generated by the subtree
at node n

 lastpos(n): the set of positions that can match
the last symbol of a string generated be the
subtree at node n

 followpos(i): the set of positions that can follow
position i in the tree

38

From Regular Expression to DFA

Directly: Annotating the Tree

39

Node n nullable(n) firstpos(n) lastpos(n)

Leaf true

Leaf i false {i} {i}

|

/ \

c1 c2

nullable(c1)

or

nullable(c2)

firstpos(c1)

firstpos(c2)

lastpos(c1)

lastpos(c2)

•

/ \

c1 c2

nullable(c1)

and

nullable(c2)

if nullable(c1) then

firstpos(c1)

firstpos(c2)

else firstpos(c1)

if nullable(c2) then

lastpos(c1)

lastpos(c2)

else lastpos(c2)

*

|

c1

true firstpos(c1) lastpos(c1)

From Regular Expression to DFA

Directly: Syntax Tree of (a|b)*abb#

40

{6} {1, 2, 3}

{5} {1, 2, 3}

{4} {1, 2, 3}

{3} {1, 2, 3}

{1, 2} {1, 2} *

{1, 2} {1, 2} |

{1} {1} a {2} {2} b

{3} {3} a

{4} {4} b

{5} {5} b

{6} {6} #

nullable

firstpos lastpos

1 2

3

4

5

6

From Regular Expression to

DFA Directly: followpos

41

for each node n in the tree do

 if n is a cat-node with left child c1 and right child c2 then

 for each i in lastpos(c1) do

 followpos(i) := followpos(i) firstpos(c2)

 end do

 else if n is a star-node

 for each i in lastpos(n) do

 followpos(i) := followpos(i) firstpos(n)

 end do

 end if

end do

From Regular Expression to

DFA Directly: Algorithm

42

s0 := firstpos(root) where root is the root of the syntax tree

Dstates := {s0} and is unmarked

while there is an unmarked state T in Dstates do

 mark T

 for each input symbol a do

 let U be the set of positions that are in followpos(p)

 for some position p in T,

 such that the symbol at position p is a

 if U is not empty and not in Dstates then

 add U as an unmarked state to Dstates

 end if

 Dtran[T,a] := U

 end do

end do

From Regular Expression to

DFA Directly: Example

43

1,2,3
start a 1,2,

3,4

1,2,

3,6

1,2,

3,5

b b

b b

a

a

a

Node followpos

1 {1, 2, 3}

2 {1, 2, 3}

3 {4}

4 {5}

5 {6}

6 -

1

2

3 4 5 6

Time-Space Tradeoffs

44

Automaton
Space

(worst case)

Time

(worst case)

NFA O(r) O(rx)

DFA O(2|r|) O(x)

45

 Thank you

