
Lexical Analysis

1

The Reason Why Lexical

Analysis is a Separate Phase
 Simplifies the design of the compiler

 LL(1) or LR(1) parsing with 1 token lookahead would
not be possible (multiple characters/tokens to match)

 Provides efficient implementation
 Systematic techniques to implement lexical analyzers

by hand or automatically from specifications

 Stream buffering methods to scan input

 Improves portability
 Non-standard symbols and alternate character

encodings can be normalized (e.g. UTF8, trigraphs)

2

Interaction of the Lexical

Analyzer with the Parser

3

Lexical

Analyzer
Parser

Source

Program

Token,

tokenval

Symbol Table

Get next

token

error error

Attributes of Tokens

4

Lexical analyzer y := 31 + 28*x

Parser

<id, “y”> <assign, > <num, 31> <‘+’, > <num, 28> <‘*’, > <id, “x”>

token

(lookahead)

tokenval

(token attribute)

Tokens, Patterns, and Lexemes

 A token is a classification of lexical units

 For example: id and num

 Lexemes are the specific character strings that

make up a token

 For example: abc and 123

 Patterns are rules describing the set of lexemes

belonging to a token

 For example: “letter followed by letters and digits” and

“non-empty sequence of digits”

5

Specification of Patterns for

Tokens: Definitions
 An alphabet  is a finite set of symbols

(characters)

 A string s is a finite sequence of symbols
from 

 s denotes the length of string s

  denotes the empty string, thus  = 0

 A language is a specific set of strings over
some fixed alphabet 

6

Specification of Patterns for

Tokens: String Operations
 The concatenation of two strings x and y is

denoted by xy

 The exponentation of a string s is defined

by

 s0 = 

 si = si-1s for i > 0

note that s = s = s

7

Specification of Patterns for

Tokens: Language Operations
 Union

 L  M = {s  s  L or s  M}

 Concatenation
 LM = {xy  x  L and y  M}

 Exponentiation
 L0 = {}; Li = Li-1L

 Kleene closure
 L* = i=0,…, Li

 Positive closure
 L+ = i=1,…, Li

8

Specification of Patterns for

Tokens: Regular Expressions
 Basis symbols:

  is a regular expression denoting language {}

 a   is a regular expression denoting {a}

 If r and s are regular expressions denoting
languages L(r) and M(s) respectively, then
 rs is a regular expression denoting L(r)  M(s)

 rs is a regular expression denoting L(r)M(s)

 r* is a regular expression denoting L(r)*

 (r) is a regular expression denoting L(r)

 A language defined by a regular expression is
called a regular set

9

Specification of Patterns for

Tokens: Regular Definitions
 Regular definitions introduce a naming

convention with name-to-regular-expression

bindings:

 d1  r1

 d2  r2

 …

 dn  rn

where each ri is a regular expression over

   {d1, d2, …, di-1 }

 Any dj in ri can be textually substituted in ri to

obtain an equivalent set of definitions
10

Specification of Patterns for

Tokens: Regular Definitions
 Example:

letter  AB…Zab…z
 digit  01…9
 id  letter (letterdigit)*

Regular definitions cannot be recursive:

digits  digit digitsdigit wrong!

11

Specification of Patterns for

Tokens: Notational Shorthand
 The following shorthands are often used:

 r+ = rr*

 r? = r
 [a-z] = abc…z

 Examples:
digit  [0-9]

num  digit+ (. digit+)? (E (+-)? digit+)?

12

Regular Definitions and

Grammars

13

stmt  if expr then stmt

  if expr then stmt else stmt

  

expr  term relop term

  term

term  id

  num
 if  if

 then  then

 else  else

relop  <  <=  <>  >  >=  =

 id  letter (letter | digit)*

 num  digit+ (. digit+)? (E (+-)? digit+)?

Grammar

Regular definitions

Coding Regular Definitions in

Transition Diagrams

14

0 2 1

6

3

4

5

7

8

return(relop, LE)

return(relop, NE)

return(relop, LT)

return(relop, EQ)

return(relop, GE)

return(relop, GT)

start <

=

>

=

>

=

other

other

*

*

9
start letter

10 11 * other

letter or digit

return(gettoken(),

 install_id())

relop  <<=<>>>==

id  letter (letterdigit)*

Coding Regular Definitions in

Transition Diagrams: Code

15

token nexttoken()

{ while (1) {

 switch (state) {

 case 0: c = nextchar();

 if (c==blank || c==tab || c==newline) {

 state = 0;

 lexeme_beginning++;

 }

 else if (c==‘<’) state = 1;

 else if (c==‘=’) state = 5;

 else if (c==‘>’) state = 6;
 else state = fail();

 break;

 case 1:

 …

 case 9: c = nextchar();

 if (isletter(c)) state = 10;

 else state = fail();

 break;

 case 10: c = nextchar();

 if (isletter(c)) state = 10;

 else if (isdigit(c)) state = 10;

 else state = 11;

 break;

 …

int fail()

{ forward = token_beginning;

 swith (start) {

 case 0: start = 9; break;

 case 9: start = 12; break;

 case 12: start = 20; break;

 case 20: start = 25; break;

 case 25: recover(); break;

 default: /* error */

 }

 return start;

}

Decides the

next start state

to check

Design of a Lexical Analyzer

Generator
 Translate regular expressions to NFA

 Translate NFA to an efficient DFA

16

 regular

expressions
NFA DFA

Simulate NFA

to recognize

tokens

Simulate DFA

to recognize

tokens

Optional

Nondeterministic Finite

Automata
 An NFA is a 5-tuple (S, , , s0, F) where

S is a finite set of states

 is a finite set of symbols, the alphabet

 is a mapping from S   to a set of states

s0  S is the start state

F  S is the set of accepting (or final)

states

17

Transition Graph

 An NFA can be diagrammatically

represented by a labeled directed graph

called a transition graph

18

0
start a

1 3 2
b b

a

b

S = {0,1,2,3}

 = {a,b}

s0 = 0

F = {3}

Transition Table

 The mapping  of an NFA can be

represented in a transition table

19

State
Input

a

Input

b

0 {0, 1} {0}

1 {2}

2 {3}

(0,a) = {0,1}

(0,b) = {0}

(1,b) = {2}

(2,b) = {3}

The Language Defined by an

NFA
 An NFA accepts an input string x if and only if

there is some path with edges labeled with

symbols from x in sequence from the start state

to some accepting state in the transition graph

 A state transition from one state to another on

the path is called a move

 The language defined by an NFA is the set of
input strings it accepts, such as (ab)*abb for

the example NFA

20

Design of a Lexical Analyzer

Generator: RE to NFA to DFA

21

s0

N(p1)

N(p2)
start




N(pn)



…

p1 { action1 }

p2 { action2 }

…

pn { actionn }

action1

action2

actionn

Lex specification with

regular expressions

NFA

DFA

Subset construction

From Regular Expression to

NFA (Thompson’s Construction)

22

N(r2) N(r1)

f i 

f
a

i

f i

N(r1)

N(r2)

start

start

start


 



f i
start

N(r) f i
start







a

r1r2

r1r2

r*  

Combining the NFAs of a Set of

Regular Expressions

23

2
a

1
start

6
a

3
start

4 5
b b

8 b 7
start

a b

a { action1 }

abb { action2 }

a*b+ { action3 }

2
a

1

6
a

3 4 5
b b

8 b 7

a b

0
start







Simulating the Combined NFA

Example 1

24

2
a

1

6
a

3 4 5
b b

8 b 7

a b

0
start







0

1

3

7

2

4

7

7 8

Must find the longest match:

Continue until no further moves are possible

When last state is accepting: execute action

action1

action2

action3

a b a a
none
action3

Simulating the Combined NFA

Example 2

25

2
a

1

6
a

3 4 5
b b

8 b 7

a b

0
start







0

1

3

7

2

4

7

5

8

6

8

When two or more accepting states are reached, the

first action given in the Lex specification is executed

action1

action2

action3

a b b a
none
action2

action3

Deterministic Finite Automata

 A deterministic finite automaton is a special case

of an NFA

 No state has an -transition

 For each state s and input symbol a there is at most

one edge labeled a leaving s

 Each entry in the transition table is a single state

 At most one path exists to accept a string

 Simulation algorithm is simple

26

Example DFA

27

0
start a

1 3 2
b b

b
b

a

a

a

A DFA that accepts (ab)*abb

Conversion of an NFA into a

DFA
 The subset construction algorithm converts an

NFA into a DFA using:

 -closure(s) = {s}  {t  s  …  t}

 -closure(T) = sT -closure(s)

 move(T,a) = {t  s a t and s  T}

 The algorithm produces:

Dstates is the set of states of the new DFA

consisting of sets of states of the NFA

Dtran is the transition table of the new DFA

28

-closure and move Examples

29

2
a

1

6
a

3 4 5
b b

8 b 7

a b

0
start







-closure({0}) = {0,1,3,7}

move({0,1,3,7},a) = {2,4,7}

-closure({2,4,7}) = {2,4,7}
move({2,4,7},a) = {7}

-closure({7}) = {7}
move({7},b) = {8}

-closure({8}) = {8}
move({8},a) = 

0

1

3

7

2

4

7

7 8

a b a a
none

Also used to simulate NFAs (!)

Simulating an NFA using

-closure and move

30

S := -closure({s0})

Sprev := 

a := nextchar()

while S   do

 Sprev := S

 S := -closure(move(S,a))

 a := nextchar()

end do

if Sprev  F   then

 execute action in Sprev

 return “yes”

else return “no”

The Subset Construction

Algorithm

31

Initially, -closure(s0) is the only state in Dstates and it is unmarked

while there is an unmarked state T in Dstates do

 mark T

 for each input symbol a   do

 U := -closure(move(T,a))

 if U is not in Dstates then

 add U as an unmarked state to Dstates

 end if

 Dtran[T,a] := U

 end do

end do

Subset Construction Example

1

32

0
start a

1 10

2

b

b

a

b

3

4 5

6 7 8 9
 











A
start

B

C

D E

b

b

b

b

b

a
a

a

a

Dstates

A = {0,1,2,4,7}

B = {1,2,3,4,6,7,8}

C = {1,2,4,5,6,7}

D = {1,2,4,5,6,7,9}

E = {1,2,4,5,6,7,10}

a

Subset Construction Example

2

33

2
a

1

6
a

3 4 5
b b

8 b 7

a b

0
start






a1

a2

a3

Dstates

A = {0,1,3,7}

B = {2,4,7}

C = {8}

D = {7}

E = {5,8}

F = {6,8}

A
start

a

D

b

b

b

a
b

b
B

C

E F

a

b

a1

a3

a3 a2 a3

Minimizing the Number of

States of a DFA

34

A
start

B

C

D E

b

b

b

b

b

a
a

a

a

a

AC
start

B D E
b b

b

a

b

a

a a

From Regular Expression to

DFA Directly
 The “important states” of an NFA are

those without an -transition, that is if

move({s},a)   for some a then s is an

important state

 The subset construction algorithm uses

only the important states when it

determines

-closure(move(T,a))

35

From Regular Expression to

DFA Directly (Algorithm)
 Augment the regular expression r with a

special end symbol # to make accepting

states important: the new expression is r#

Construct a syntax tree for r#

 Traverse the tree to construct functions

nullable, firstpos, lastpos, and followpos

36

From Regular Expression to DFA

Directly: Syntax Tree of (a|b)*abb#

37

*

|

1

a
2

b

3
a

4
b

5

b

6

concatenation

closure

alternation

position

number

(for leafs )

From Regular Expression to DFA

Directly: Annotating the Tree

 nullable(n): the subtree at node n generates
languages including the empty string

 firstpos(n): set of positions that can match the
first symbol of a string generated by the subtree
at node n

 lastpos(n): the set of positions that can match
the last symbol of a string generated be the
subtree at node n

 followpos(i): the set of positions that can follow
position i in the tree

38

From Regular Expression to DFA

Directly: Annotating the Tree

39

Node n nullable(n) firstpos(n) lastpos(n)

Leaf  true  

Leaf i false {i} {i}

|

/ \

c1 c2

nullable(c1)

or

nullable(c2)

firstpos(c1)



firstpos(c2)

lastpos(c1)



lastpos(c2)

•

/ \

c1 c2

nullable(c1)

and

nullable(c2)

if nullable(c1) then

firstpos(c1) 

firstpos(c2)

else firstpos(c1)

if nullable(c2) then

lastpos(c1) 

lastpos(c2)

else lastpos(c2)

*

|

c1

true firstpos(c1) lastpos(c1)

From Regular Expression to DFA

Directly: Syntax Tree of (a|b)*abb#

40

{6} {1, 2, 3}

{5} {1, 2, 3}

{4} {1, 2, 3}

{3} {1, 2, 3}

{1, 2} {1, 2} *

{1, 2} {1, 2} |

{1} {1} a {2} {2} b

{3} {3} a

{4} {4} b

{5} {5} b

{6} {6} #

nullable

firstpos lastpos

1 2

3

4

5

6

From Regular Expression to

DFA Directly: followpos

41

for each node n in the tree do

 if n is a cat-node with left child c1 and right child c2 then

 for each i in lastpos(c1) do

 followpos(i) := followpos(i)  firstpos(c2)

 end do

 else if n is a star-node

 for each i in lastpos(n) do

 followpos(i) := followpos(i)  firstpos(n)

 end do

 end if

end do

From Regular Expression to

DFA Directly: Algorithm

42

s0 := firstpos(root) where root is the root of the syntax tree

Dstates := {s0} and is unmarked

while there is an unmarked state T in Dstates do

 mark T

 for each input symbol a   do

 let U be the set of positions that are in followpos(p)

 for some position p in T,

 such that the symbol at position p is a

 if U is not empty and not in Dstates then

 add U as an unmarked state to Dstates

 end if

 Dtran[T,a] := U

 end do

end do

From Regular Expression to

DFA Directly: Example

43

1,2,3
start a 1,2,

3,4

1,2,

3,6

1,2,

3,5

b b

b b

a

a

a

Node followpos

1 {1, 2, 3}

2 {1, 2, 3}

3 {4}

4 {5}

5 {6}

6 -

1

2

3 4 5 6

Time-Space Tradeoffs

44

Automaton
Space

(worst case)

Time

(worst case)

NFA O(r) O(rx)

DFA O(2|r|) O(x)

45

 Thank you

