Lexical Analysis

The Reason Why Lexical Analysis is a Separate Phase

- Simplifies the design of the compiler
 - LL(1) or LR(1) parsing with 1 token lookahead would not be possible (multiple characters/tokens to match)
- Provides efficient implementation
 - Systematic techniques to implement lexical analyzers by hand or automatically from specifications
 - Stream buffering methods to scan input
- Improves portability
 - Non-standard symbols and alternate character encodings can be normalized (e.g. UTF8, trigraphs)

Interaction of the Lexical Analyzer with the Parser

Attributes of Tokens

Tokens, Patterns, and Lexemes

> A token is a classification of lexical units

- For example: id and num
- Lexemes are the specific character strings that make up a token
 - For example: abc and 123

Patterns are rules describing the set of lexemes belonging to a token

 For example: "letter followed by letters and digits" and "non-empty sequence of digits"

Specification of Patterns for Tokens: *Definitions*

- An alphabet Σ is a finite set of symbols (characters)
- A string s is a finite sequence of symbols from Σ
 - s denotes the length of string s
 - ϵ denotes the empty string, thus $|\epsilon| = 0$

A language is a specific set of strings over some fixed alphabet Σ Specification of Patterns for Tokens: String Operations
The concatenation of two strings x and y is denoted by xy
The exponentation of a string s is defined by

> $S^{0} = \varepsilon$ $S^{i} = S^{i-1}S \quad \text{for } i > 0$

note that $s\varepsilon = \varepsilon s = s$

Specification of Patterns for Tokens: Language Operations > Union $L \cup M = \{s \mid s \in L \text{ or } s \in M\}$ Concatenation $LM = \{xy \mid x \in L \text{ and } y \in M\}$ > Exponentiation $L^{0} = \{\varepsilon\}; \quad L^{i} = L^{i-1}L$ > Kleene closure $L^* = \bigcup_{i=0,\ldots,\infty} L^i$ > Positive closure $L^+ = \bigcup_{i=1,\ldots,\infty} L^i$

Specification of Patterns for Tokens: Regular Expressions > Basis symbols: • ε is a regular expression denoting language { ε } • $a \in \Sigma$ is a regular expression denoting $\{a\}$ \succ If r and s are regular expressions denoting languages L(r) and M(s) respectively, then • r s is a regular expression denoting $L(r) \cup M(s)$ • rs is a regular expression denoting L(r)M(s) • r^* is a regular expression denoting $L(r)^*$ • (r) is a regular expression denoting L(r)> A language defined by a regular expression is called a regular set

 Specification of Patterns for Tokens: Regular Definitions
 Regular definitions introduce a naming convention with name-to-regular-expression bindings:

$$\begin{array}{c} d_1 \rightarrow r_1 \\ d_2 \rightarrow r_2 \end{array}$$

 $d_n \rightarrow r_n$ where each r_i is a regular expression over $\Sigma \cup \{d_1, d_2, ..., d_{i-1}\}$ > Any d_j in r_i can be textually substituted in r_i to obtain an equivalent set of definitions Specification of Patterns for Tokens: Regular Definitions
Example:

Specification of Patterns for
Tokens: Notational Shorthand
The following shorthands are often used:

$$r^{+} = rr^{*}$$

$$r^{?} = r \mid \varepsilon$$

$$[\mathbf{a} - \mathbf{z}] = \mathbf{a} \mid \mathbf{b} \mid \mathbf{c} \mid \dots \mid \mathbf{z}$$

➤ Examples: digit → [0-9] num → digit⁺ (. digit⁺)? (E (+ | -)? digit⁺)?

Regular Definitions and Grammars

Grammar $stmt \rightarrow if expr then stmt$ if expr then stmt else stmt 3 $expr \rightarrow term \ relop \ term$ term **Regular definitions** *term* \rightarrow **id** $if \rightarrow if$ then \rightarrow then $else \rightarrow else$ $relop \rightarrow < | <= | <> | > | >= | =$ $id \rightarrow letter (letter + digit)^*$ $num \rightarrow digit^+ (. digit^+)? (E (+ -)? digit^+_3)?$

Coding Regular Definitions in Transition Diagrams

Coding Regular Definitions in Transition Diagrams: Code

```
token nexttoken()
{ while (1) {
    switch (state) {
    case 0: c = nextchar();
       if (c==blank || c==tab || c==newline) {
         state = 0;
         lexeme beginning++;
       }
       else if (c=='<') state = 1;
       else if (c=='=') state = 5;
       else if (c=='>') state = 6;
       else state = fail();
       break;
     case 1:
     case 9: c = nextchar();
       if (isletter(c)) state = 10;
       else state = fail();
       break;
     case 10: c = nextchar();
       if (isletter(c)) state = 10;
       else if (isdigit(c)) state = 10;
       else state = 11;
       break;
```

Decides the next start state to check int fail() { forward = token beginning; swith (start) { case 0: start = 9; break; case 9: start = 12; break; case 12: start = 20; break; case 20: start = 25; break; case 25: recover(); break; default: /* error */ return start;

}

Design of a Lexical Analyzer Generator

Translate regular expressions to NFA
 Translate NFA to an efficient DFA

Nondeterministic Finite Automata

> An NFA is a 5-tuple ($S, \Sigma, \delta, s_0, F$) where

S is a finite set of states Σ is a finite set of symbols, the alphabet δ is a mapping from $S \times \Sigma$ to a set of states $s_0 \in S$ is the start state $F \subseteq S$ is the set of accepting (or final) states

Transition Graph

An NFA can be diagrammatically represented by a labeled directed graph called a *transition graph*

Transition Table

The mapping δ of an NFA can be represented in a *transition table*

 $\delta(0,\mathbf{a}) = \{0,1\}$ $\delta(0,\mathbf{b}) = \{0\}$ $\delta(1,\mathbf{b}) = \{2\}$ $\delta(2,\mathbf{b}) = \{3\}$

State	Input a	Input b
0	{0, 1}	{0}
1		{2}
2		{3}

The Language Defined by an NFA

- An NFA accepts an input string x if and only if there is some path with edges labeled with symbols from x in sequence from the start state to some accepting state in the transition graph
- A state transition from one state to another on the path is called a *move*

The language defined by an NFA is the set of input strings it accepts, such as (a b)*abb for the example NFA

Design of a Lexical Analyzer Generator: RE to NFA to DFA

start

Lex specification with regular expressions

 $p_1 \qquad \{ action_1 \} \\ p_2 \qquad \{ action_2 \} \\ \dots \\ p_n \qquad \{ action_n \} \end{cases}$

 $N(p_n)$

DFA

3

 $action_1$

action₂

action,

Subset construction

21

From Regular Expression to NFA (Thompson's Construction)

Combining the NFAs of a Set of Regular Expressions

Simulating the Combined NFA Example 1

3

Must find the *longest match*: Continue until no further moves are possible When last state is accepting: execute action

Simulating the Combined NFA Example 2

When two or more accepting states are reached, the first action given in the Lex specification is executed

Deterministic Finite Automata

A deterministic finite automaton is a special case of an NFA

- No state has an ϵ -transition
- For each state s and input symbol a there is at most one edge labeled a leaving s

Each entry in the transition table is a single state

- At most one path exists to accept a string
- Simulation algorithm is simple

Example DFA

A DFA that accepts (**a b**)***abb**

Conversion of an NFA into a DFA

The subset construction algorithm converts an NFA into a DFA using: ε -closure(s) = {s} \cup {t | s $\rightarrow_{\varepsilon} \dots \rightarrow_{\varepsilon} t$ } ε -closure(T) = $\bigcup_{s \in T} \varepsilon$ -closure(s) $move(T, a) = \{t \mid s \rightarrow_a t \text{ and } s \in T\}$ > The algorithm produces: Dstates is the set of states of the new DFA consisting of sets of states of the NFA Dtran is the transition table of the new DFA

ε-closure and move Examples

 ε -closure({0}) = {0,1,3,7} move({0,1,3,7},a) = {2,4,7} ε -closure({2,4,7}) = {2,4,7} move({2,4,7},a) = {7} ε -closure({7}) = {7} move({7},b) = {8} ε -closure({8}) = {8} move({8},a) = Ø

29

Simulating an NFA using ε-closure and move

 $S := \varepsilon$ -closure($\{s_0\}$) $S_{prev} := \emptyset$ a := nextchar()while $S \neq \emptyset$ do $S_{prev} := S$ $S := \varepsilon$ -closure(move(S,a)) a := nextchar()end do if $S_{prev} \cap F \neq \emptyset$ then execute action in S_{prev} return "yes" return "no" else

The Subset Construction Algorithm

Initially, ε -closure(s₀) is the only state in Dstates and it is unmarked while there is an unmarked state T in Dstates do mark T for each input symbol $a \in \Sigma$ do $U := \varepsilon$ -closure(move(T,a)) if U is not in *Dstates* then add U as an unmarked state to *Dstates* end if Dtran[T,a] := Uend do end do

Subset Construction Example

Dstates $A = \{0,1,2,4,7\}$ $B = \{1,2,3,4,6,7,8\}$ $C = \{1,2,4,5,6,7\}$ $D = \{1,2,4,5,6,7,9\}$ $E = \{1,2,4,5,6,7,10\}$

32

Subset Construction Example 2

Dstates $A = \{0,1,3,7\}$ $B = \{2,4,7\}$ $C = \{8\}$ $D = \{7\}$ $E = \{5,8\}$ $F = \{6,8\}_{33}$

Minimizing the Number of States of a DFA

From Regular Expression to DFA Directly

➤ The "important states" of an NFA are those without an ε-transition, that is if move({s},a) ≠ Ø for some a then s is an important state

 The subset construction algorithm uses only the important states when it determines ε-closure(move(T,a))

From Regular Expression to **DFA Directly (Algorithm)** > Augment the regular expression r with a special end symbol # to make accepting states important: the new expression is r# > Construct a syntax tree for *r*# Traverse the tree to construct functions nullable, firstpos, lastpos, and followpos

From Regular Expression to DFA Directly: Syntax Tree of (a|b)*abb#

From Regular Expression to DFA Directly: Annotating the Tree

- *nullable(n)*: the subtree at node *n* generates languages including the empty string
- firstpos(n): set of positions that can match the first symbol of a string generated by the subtree at node n
- Iastpos(n): the set of positions that can match the last symbol of a string generated be the subtree at node n
- followpos(i): the set of positions that can follow position i in the tree

From Regular Expression to DFA Directly: Annotating the Tree

Node <i>n</i>	nullable(n)	firstpos(n)	lastpos(n)
Leaf ɛ	true	Ø	Ø
Leaf i	false	$\{i\}$	$\{i\}$
c_1	$nullable(c_1)$ or nullable(c_2)	$firstpos(c_1)$ \cup $firstpos(c_2)$	$lastpos(c_1) \\ \cup \\ lastpos(c_2)$
$c_1 c_2$	$nullable(c_1)$ and $nullable(c_2)$	if $nullable(c_1)$ then $firstpos(c_1) \cup$ $firstpos(c_2)$ else $firstpos(c_1)$	if $nullable(c_2)$ then $lastpos(c_1) \cup$ $lastpos(c_2)$ else $lastpos(c_2)$
* C ₁	true	$firstpos(c_1)$	$lastpos(c_1)$ 39

From Regular Expression to DFA Directly: Syntax Tree of (a|b)*abb#

From Regular Expression to DFA Directly: *followpos*

for each node *n* in the tree do if n is a cat-node with left child c_1 and right child c_2 then for each *i* in $lastpos(c_1)$ do $followpos(i) := followpos(i) \cup firstpos(c_2)$ end do else if *n* is a star-node for each *i* in *lastpos(n)* do $followpos(i) := followpos(i) \cup firstpos(n)$ end do end if end do

From Regular Expression to DFA Directly: Algorithm

 $s_0 := firstpos(root)$ where root is the root of the syntax tree $Dstates := \{s_0\}$ and is unmarked while there is an unmarked state T in Dstates do mark T

for each input symbol $a \in \Sigma$ do let U be the set of positions that are in followpos(p)for some position p in T, such that the symbol at position p is a if U is not empty and not in Dstates then add *U* as an unmarked state to *Dstates* end if Dtran[T,a] := Uend do 42 end do

From Regular Expression to DFA Directly: Example

Time-Space Tradeoffs

Automaton	Space (worst case)	Time (worst case)
NFA	O(r)	$O(r \times x)$
DFA	$O(2^{ r })$	O(x)

Thank you

45