
Lexical Analysis 
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The Reason Why Lexical 

Analysis is a Separate Phase 
 Simplifies the design of the compiler 

 LL(1) or LR(1) parsing with 1 token lookahead would 
not be possible (multiple characters/tokens to match) 

 Provides efficient implementation 
 Systematic techniques to implement lexical analyzers 

by hand or automatically from specifications 

 Stream buffering methods to scan input 

 Improves portability 
 Non-standard symbols and alternate character 

encodings can be normalized (e.g. UTF8, trigraphs) 
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Interaction of the Lexical 

Analyzer with the Parser 
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Attributes of Tokens 
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Lexical analyzer y := 31 + 28*x 

Parser 

<id, “y”> <assign, > <num, 31> <‘+’, > <num, 28> <‘*’, > <id, “x”> 

token 

(lookahead) 

tokenval 

(token attribute) 



Tokens, Patterns, and Lexemes 

 A token is a classification of lexical units 

 For example: id and num 

 Lexemes are the specific character strings that 

make up a token 

 For example: abc and 123 

 Patterns are rules describing the set of lexemes 

belonging to a token 

 For example: “letter followed by letters and digits” and 

“non-empty sequence of digits” 
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Specification of Patterns for 

Tokens: Definitions 
 An alphabet  is a finite set of symbols 

(characters) 

 A string s is a finite sequence of symbols 
from  

 s denotes the length of string s 

  denotes the empty string, thus  = 0 

 A language is a specific set of strings over 
some fixed alphabet  
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Specification of Patterns for 

Tokens: String Operations 
 The concatenation of two strings x and y is 

denoted by xy 

 The exponentation of a string s is defined 

by 

 

 s0 =  

 si = si-1s   for i > 0 

 

note that s = s = s 
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Specification of Patterns for 

Tokens: Language Operations 
 Union 

 L  M = {s  s  L or s  M} 

 Concatenation 
 LM = {xy  x  L and y  M} 

 Exponentiation 
 L0 = {};   Li = Li-1L 

 Kleene closure 
 L* = i=0,…, Li 

 Positive closure 
 L+ = i=1,…, Li 
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Specification of Patterns for 

Tokens: Regular Expressions 
 Basis symbols: 

  is a regular expression denoting language {} 

 a   is a regular expression denoting {a} 

 If r and s are regular expressions denoting 
languages L(r) and M(s) respectively, then 
 rs is a regular expression denoting L(r)  M(s) 

 rs is a regular expression denoting L(r)M(s) 

 r* is a regular expression denoting L(r)* 

 (r) is a regular expression denoting L(r) 

 A language defined by a regular expression is 
called a regular set 
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Specification of Patterns for 

Tokens: Regular Definitions 
 Regular definitions introduce a naming 

convention with name-to-regular-expression 

bindings:  

 d1  r1 

 d2  r2 

 … 

 dn  rn  

where each ri is a regular expression over 

   {d1, d2, …, di-1 } 

 Any dj in ri can be textually substituted in ri to 

obtain an equivalent set of definitions 
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Specification of Patterns for 

Tokens: Regular Definitions 
 Example: 

 
letter  AB…Zab…z 
  digit  01…9 
      id  letter ( letterdigit )* 

 

Regular definitions cannot be recursive: 
 
digits  digit digitsdigit wrong! 
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Specification of Patterns for 

Tokens: Notational Shorthand 
 The following shorthands are often used: 

 

      r+ = rr* 

      r? = r 
 [a-z] = abc…z 

 

 Examples: 
digit  [0-9] 

num  digit+ (. digit+)? ( E (+-)? digit+ )? 
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Regular Definitions and 

Grammars 
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stmt  if expr then stmt 

          if expr then stmt else stmt 

            

expr  term relop term 

          term 

term  id 

          num 
       if  if 

  then  then 

   else  else 

relop  <  <=  <>  >  >=  = 

      id  letter ( letter | digit )* 

 num  digit+ (. digit+)? ( E (+-)? digit+ )? 

Grammar 

Regular definitions 



Coding Regular Definitions in 

Transition Diagrams 
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9 
start letter 

10 11 * other 

letter or digit 

return(gettoken(), 

             install_id()) 

relop  <<=<>>>== 

id  letter ( letterdigit )* 



Coding Regular Definitions in 

Transition Diagrams: Code 
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token nexttoken() 

{ while (1) { 

    switch (state) { 

    case 0: c = nextchar(); 

       if (c==blank || c==tab || c==newline) { 

         state = 0; 

         lexeme_beginning++; 

       } 

       else if (c==‘<’) state = 1; 

       else if (c==‘=’) state = 5; 

       else if (c==‘>’) state = 6; 
       else state = fail(); 

       break; 

     case 1: 

       … 

     case 9: c = nextchar(); 

       if (isletter(c)) state = 10; 

       else state = fail(); 

       break; 

     case 10: c = nextchar(); 

       if (isletter(c)) state = 10; 

       else if (isdigit(c)) state = 10; 

       else state = 11; 

       break; 

     … 

int fail() 

{ forward = token_beginning; 

  swith (start) { 

  case  0: start =  9; break; 

  case  9: start = 12; break; 

  case 12: start = 20; break; 

  case 20: start = 25; break; 

  case 25: recover(); break; 

  default: /* error */ 

  } 

  return start; 

} 

Decides the 

next start state 

to check 



Design of a Lexical Analyzer 

Generator 
 Translate regular expressions to NFA 

 Translate NFA to an efficient DFA 
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Nondeterministic Finite 

Automata 
 An NFA is a 5-tuple (S, , , s0, F) where 

 

S is a finite set of states 

 is a finite set of symbols, the alphabet 

 is a mapping from S   to a set of states 

s0  S is the start state 

F  S is the set of accepting (or final) 

states 
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Transition Graph 

 An NFA can be diagrammatically 

represented by a labeled directed graph 

called a transition graph 
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0 
start a 
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b b 

a 

b 

S = {0,1,2,3} 

 = {a,b} 

s0 = 0 

F = {3} 



Transition Table 

 The mapping  of an NFA can be 

represented in a transition table 
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State 
Input 

a 

Input 

b 

0 {0, 1} {0} 

1 {2} 

2 {3} 

(0,a) = {0,1} 

(0,b) = {0} 

(1,b) = {2} 

(2,b) = {3} 



The Language Defined by an 

NFA 
 An NFA accepts an input string x if and only if 

there is some path with edges labeled with 

symbols from x in sequence from the start state 

to some accepting state in the transition graph 

 A state transition from one state to another on 

the path is called a move 

 The language defined by an NFA is the set of 
input strings it accepts, such as (ab)*abb for 

the example NFA 
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Design of a Lexical Analyzer 

Generator: RE to NFA to DFA 
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s0 

N(p1) 

N(p2) 
start 

 

 
N(pn) 

 

… 

p1 { action1 } 

p2 { action2 } 

… 

pn { actionn } 
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action2 
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regular expressions 

NFA 

DFA 

Subset construction 



From Regular Expression to 

NFA (Thompson’s Construction) 
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Combining the NFAs of a Set of 

Regular Expressions 
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2 
a 

1 
start 

6 
a 

3 
start 

4 5 
b b 

8 b 7 
start 

a b 

a { action1 } 

abb { action2 }  

a*b+ { action3 } 

2 
a 

1 

6 
a 

3 4 5 
b b 

8 b 7 

a b 

0 
start 

 

 

 



Simulating the Combined NFA 

Example 1 
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Must find the longest match: 

Continue until no further moves are possible 
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Simulating the Combined NFA 

Example 2 
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When two or more accepting states are reached, the 

first action given in the Lex specification is executed 

action1 

action2 

action3 

a b b a 
none 
action2 
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Deterministic Finite Automata 

 A deterministic finite automaton is a special case 

of an NFA 

 No state has an -transition 

 For each state s and input symbol a there is at most 

one edge labeled a leaving s 

 Each entry in the transition table is a single state 

 At most one path exists to accept a string 

 Simulation algorithm is simple 
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Example DFA 
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0 
start a 

1 3 2 
b b 

b 
b 

a 

a 

a 

A DFA that accepts (ab)*abb 



Conversion of an NFA into a 

DFA 
 The subset construction algorithm converts an 

NFA into a DFA using: 

 -closure(s) = {s}  {t  s  …  t} 

 -closure(T) = sT -closure(s) 

 move(T,a) = {t  s a t and s  T} 

 The algorithm produces: 

Dstates is the set of states of the new DFA 

consisting of sets of states of the NFA 

Dtran is the transition table of the new DFA 
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-closure and move Examples 
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0 
start 

 

 

 

-closure({0}) = {0,1,3,7} 

move({0,1,3,7},a) = {2,4,7} 

-closure({2,4,7}) = {2,4,7} 
move({2,4,7},a) = {7} 

-closure({7}) = {7} 
move({7},b) = {8} 

-closure({8}) = {8} 
move({8},a) =  

0 

1 
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7 8 

a b a a 
none 

Also used to simulate NFAs (!) 



Simulating an NFA using 

-closure and move 
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S := -closure({s0}) 

Sprev :=   

a := nextchar() 

while S   do 

 Sprev := S 

 S := -closure(move(S,a)) 

 a := nextchar() 

end do 

if Sprev  F   then 

 execute action in Sprev 

 return “yes” 

else return “no” 



The Subset Construction 

Algorithm 

31 

Initially, -closure(s0) is the only state in Dstates and it is unmarked 

while there is an unmarked state T in Dstates do 

 mark T 

 for each input symbol a   do 

  U := -closure(move(T,a)) 

  if U is not in Dstates then 

   add U as an unmarked state to Dstates 

  end if 

  Dtran[T,a] := U 

 end do 

end do 



Subset Construction Example 

1 
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0 
start a 

1 10 
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b 

b 

a 
a 

a 

a 

Dstates 

A = {0,1,2,4,7} 

B = {1,2,3,4,6,7,8} 

C = {1,2,4,5,6,7} 

D = {1,2,4,5,6,7,9} 

E = {1,2,4,5,6,7,10} 

a 



Subset Construction Example 

2 
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start 
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Minimizing the Number of 

States of a DFA 
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From Regular Expression to 

DFA Directly 
 The “important states” of an NFA are 

those without an -transition, that is if 

move({s},a)   for some a then s is an 

important state 

 The subset construction algorithm uses 

only the important states when it 

determines 

-closure(move(T,a))  
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From Regular Expression to 

DFA Directly (Algorithm) 
 Augment the regular expression r with a 

special end symbol # to make accepting 

states important: the new expression is r# 

Construct a syntax tree for r# 

 Traverse the tree to construct functions 

nullable, firstpos, lastpos, and followpos 
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From Regular Expression to DFA 

Directly: Syntax Tree of (a|b)*abb# 
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* 
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1 
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3 
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4 
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# 
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concatenation 

closure 

alternation 

position 

number 

(for leafs ) 



From Regular Expression to DFA 

Directly: Annotating the Tree 

 nullable(n): the subtree at node n generates 
languages including the empty string 

 firstpos(n): set of positions that can match the 
first symbol of a string generated by the subtree 
at node n 

 lastpos(n): the set of positions that can match 
the last symbol of a string generated be the 
subtree at node n 

 followpos(i): the set of positions that can follow 
position i in the tree 
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From Regular Expression to DFA 

Directly: Annotating the Tree 
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Node n nullable(n) firstpos(n) lastpos(n) 

Leaf  true   

Leaf i false {i} {i} 

| 

/ \ 

c1   c2 

nullable(c1) 

or 

nullable(c2) 

firstpos(c1) 

 

firstpos(c2) 

lastpos(c1) 

 

lastpos(c2) 

• 

/ \ 

c1   c2 

nullable(c1)  

and 

nullable(c2) 

if nullable(c1) then 

firstpos(c1)  

firstpos(c2) 

else firstpos(c1) 

if nullable(c2) then 

lastpos(c1)  

lastpos(c2) 

else lastpos(c2) 

* 

| 

c1 

true firstpos(c1) lastpos(c1) 



From Regular Expression to DFA 

Directly: Syntax Tree of (a|b)*abb# 
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{6} {1, 2, 3} 

{5} {1, 2, 3} 

{4} {1, 2, 3} 

{3} {1, 2, 3} 

{1, 2} {1, 2} * 

{1, 2} {1, 2} | 

{1} {1} a {2} {2} b 

{3} {3} a 

{4} {4} b 

{5} {5} b 

{6} {6} # 

nullable 

firstpos lastpos 

1 2 

3 

4 

5 

6 



From Regular Expression to 

DFA Directly: followpos 
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for each node n in the tree do 

 if n is a cat-node with left child c1 and right child c2 then 

  for each i in lastpos(c1) do 

   followpos(i) := followpos(i)  firstpos(c2) 

  end do 

 else if n is a star-node 

  for each i in lastpos(n) do 

   followpos(i) := followpos(i)  firstpos(n) 

  end do 

 end if 

end do 



From Regular Expression to 

DFA Directly: Algorithm 
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s0 := firstpos(root) where root is the root of the syntax tree 

Dstates := {s0} and is unmarked 

while there is an unmarked state T in Dstates do 

 mark T 

 for each input symbol a   do 

  let U be the set of positions that are in followpos(p) 

   for some position p in T, 

   such that the symbol at position p is a 

  if U is not empty and not in Dstates then 

   add U as an unmarked state to Dstates 

  end if 

  Dtran[T,a] := U 

 end do 

end do 



From Regular Expression to 

DFA Directly: Example 
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1,2,3 
start a 1,2, 

3,4 
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1,2, 

3,5 
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b b 
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a 

Node followpos 

1 {1, 2, 3} 

2 {1, 2, 3} 

3 {4} 

4 {5} 

5 {6} 

6 - 
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2 

3 4 5 6 



Time-Space Tradeoffs 
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Automaton 
Space 

(worst case) 

Time 

(worst case) 

NFA O(r) O(rx) 

DFA O(2|r|) O(x) 
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                Thank you 
 

 

 


