Lexical Analysis

The Reason Why Lexical
Analysis Is a Separate Phase

> Simplifies the design of the compiler

e LL(1) or LR(1) parsing with 1 token lookahead would
not be possible (multiple characters/tokens to match)

> Provides efficient implementation

o Systematic techniques to implement lexical analyzers
by hand or automatically from specifications

o Stream buffering methods to scan input
> Improves portability

o Non-standard symbols and alternate character
encodings can be normalized (e.g. UTFS8, trigraphs)

Interaction of the Lexical
Analyzer with the Parser

Token,
Program Analyzer & AESEE
Get next
3 7
l S token , l
\ /
\ /
error \) error

Symbol Table

Attributes of Tokens

y := 31 + 28*x ——> Lexicab

gd,“y”> <assign, > <num, 31> <‘+’, > <num, 28> <‘*’, > <id, "x">

C Parser

(token attribute)

Tokens, Patterns, and Lexemes

> A token Is a classification of lexical units
o For example: id and num
> Lexemes are the specific character strings that

make up a token
o For example: abc and 123

> Patterns are rules describing the set of lexemes

belonging to a token

o For example: “letter followed by letters and digits” and
“non-empty sequence of digits”

Specification of Patterns for

Tokens: Definitions

> An alphabet X Is a finite set of symbols
(characters)

> A string s Is a finite sequence of symbols
from X
. |s| denotes the length of string s
« £ denotes the empty string, thus el =0

> A language Is a specific set of strings over
some fixed alphabet ~

Specification of Patterns for

Tokens: String Operations

> The concatenation of two strings x and y Is
denoted by xy

> The exponentation of a string s Is defined
by

sO=¢
s'=sls fori>0

note thatse =es=s

Specification of Patterns for
Tokens: Language Operations

> Union
LUM={s | SelorseMj

» Concatenation

LM = {xy | X e Landy € M}
> Exponentiation

19={c}; L'=L"L
> Kleene closure

L™ = Uiso

Specification of Patterns for
Tokens: Regular Expressions

> Basis symbols:
o ¢ IS aregular expression denoting language {c}
e A € X IS aregular expression denoting {a}

> If r and s are regular expressions denoting
languages L(r) and M(s) respectively, then
. r|sisa regular expression denoting L(r) U M(S)
o IS is a regular expression denoting L(r)M(s)
o I' IS aregular expression denoting L(r)"
o (r) Is a regular expression denoting L(r)

> A language defined by a regular expression is
called a regular set

Specification of Patterns for
Tokens: Regular Definitions

> Regular definitions introduce a naming
convention with name-to-regular-expression
bindings:
d, —>r,;
d, —>r,
d,—r,
where each r; Is a regular expression over
*u{d,d,, ...,d }

> Any d; In r; can be textually substituted in r; to
obtain an equivalent set of definitions

10

Specification of Patterns for

Tokens: Regular Definitions
> Example:

letter >A|B|...|2]a|b]l...|z
digit >0/1]...]9
id — letter (letter | digit)

> Regular definitions cannot be recursive:

digits — digit digits | digit

11

Specification of Patterns for
Tokens: Notational Shorthand

> The following shorthands are often used:

t=rr
r?:r‘e
[a-z]:a‘b‘c‘...‘z

> Examples:

digit —> [0-9]
num — digit* (. digit*)? (E (+|-)? digit*)?

12

Regular Definitions and
Grammars

Grammar
stmt — if expr then stmt

if expr then stmt else stmt

e
expr — term relop term

{87” m Regular definitions
term — id if >1if
num

then — then
else > else

relop >< | <= | <> | > | >=| =
id — letter (letter | digit)"
num — digit" (. digit")? (E (+ | -)? digits)?

Coding Regular Definitions In
Transition Diagrams

relop—><‘<=‘<>‘>‘>=‘=

start

1 = return(relop, LE)
> > return(relop, NE)

h >X<
ot er return(relop, LT)

return(relop EQ)

(i >‘ return(relop, GE)
other

>’ return(relop, GT)

id — letter (letter | digit)” letter or digit

start >@ letter >® other * return(gettoken(),
install_id(%

Coding Regular Definitions Iin
Transition Diagrams: Code

token nexttoken()
{ while (1) {
switch (state) {
case 0: ¢ = nextchar();
if (c==blank || c==tab || c==newline) {
state = 0;
lexeme beginning++;

D —
=

(c==<’) state =

(c==‘=") state

se if (c==>’) state = 6;

se state = fail();
break;

case 1:

=

S
S

O

if
if

(0]
=
(]
il
(8]

®
=
®
P

1)
=
(1)

ca

()]
()

9: ¢ = nextchar();
if (isletter(c)) state
else state = fail();
break;

case 10: ¢ = nextchar();

Hh

10;

else if (isdigit(c)) state = 10;

int fail ()

{

Decides the
next start state

forward

to check

l

= token beginning;

swith (start) {

case O:
case 9:
case 12:
case 20:
ase 25:
default:

Q

}

start = 9; break;
start = 12; break;
start = 20; break;

start = 25; break;
recover () ; break;
/* error */

return start;

15

Design of a Lexical Analyzer

regular
eXpressions

Generator

> Translate regular expressions to NFA
> Translate NFA to an efficient DFA

\

- Optional
= NFA > DFA
Simulate NFA Simulate DFA
to recognize to recognize
tokens - tokens

6

Nondeterministic Finite
Automata
> An NFA Is a 5-tuple (S, Z, 9, sy, F) where

S Is a finite set of states

> IS a finite set of symbols, the alphabet

0 Is a mapping from S x X to a set of states
Sp € S Is the start state

F — S is the set of accepting (or final)
states

17

Transition Graph

> An NFA can be diagrammatically
represented by a labeled directed graph
called a transition graph

b S=1{0,1,2,3}
start a b o) V= {a,b}
S —0——0 iyl

b =

18

Transition Table

> The mapping 6 of an NFA can be

represented In a transition table

0(0,a) = {0,1}

50b)= {0}

o(l,b) = {2}
o0(2,b) = {3}

Srae Input Input
a b
0 0, 1} 0]
I 2]
2 3]

19

The Language Defined by an
NFA

> An NFA accepts an input string x if and only if
there iIs some path with edges labeled with
symbols from x in sequence from the start state
to some accepting state in the transition graph

> A state transition from one state to another on
the path is called a move

> The language defined by an NFA is the set of
Input strings It accepts, such as (a | b)*abb for

the example NFA

20

Design of a Lexical Analyzer
Generator: RE to NFA to DFA

Lex specification with NFA
regular expressions
D1 { action, § e N@)O action,

P> { action, } j> start o € >Ny () action,

D, { action,, } 8*

From Regular Expression to
NFA (Thompson's Construction)

start
> —O=Q
a start : a @
tart
rylr —() 0,

tart
Iy >IN NG Q)

* sta -
r (e N -]

Combining the NFAs of a Set of
Regular Expressions

start>@ a
a { action, }

abb { action, } j> Start>@ aa >@bb (5>

a*b+ {action; }
Sta“»?

It

R £

T5>® 23

Simulating the Combined NFA
Example 1

action,

v
start

0) O bb b action,
a

N
@ acti0n3

> > > a > none

2 L 8 action,

Must find the longest match:

~N | W [([—= O

Continue until no further moves are possible

When last state 1s accepting: execute actign

Simulating the Combined NFA
Example 2

action,

4
start

0) O bb b action,
a

N
(T~ acti0n3

= > > > =—> none
! 2 : J action,
1 8 action,
3
7

When two or more accepting states are reached, the

first action given in the Lex specification is execyfed

Deterministic Finite Automata

> A deterministic finite automaton is a special case
of an NFA

o NO state has an e-transition

o For each state s and input symbol a there is at most
one edge labeled a leaving s

> Each entry in the transition table is a single state
o At most one path exists to accept a string
o Simulation algorithm is simple

26

Example DFA

A DFA that accepts (a | b)*abb

b
| o
a
start a /h@ b
a

a

27

Conversion of an NFA Into a
D] =Y

> The subset construction algorithm converts an
NFA into a DFA using:
e-closure(s) = {s} u {t s > ... > 1}
e-closure(T) = U, e-closure(s)
move(T,a) = {t s —. tands e T}
> The algorithm produces:
Dstates is the set of states of the new DFA
consisting of sets of states of the NFA
Dtran is the transition table of the new DFA

28

e-closure and move Examples

5
start

e-closure({0})={0,1,3,7}

move({0,1,3,7},a) = {2,4,7}

e-closure({2,4,7})=4{2,4,7}
move({2,4,7},a) = {7}

2Omua®,

N

a o b
2 a >@b > e-closure({7})= {7}
’ move({7},b) = {8}
(T~ e-closure({8}) = {8}
move({8},a) =

0 2 al>7 b>8 = none

I 4

3 7

7

Also used to simulate NFAs (!) 29

Simulating an NFA using
e-closure and move

S = g-closure({s,})

Sprev = @

a = nextchar()

while S # & do
A C)

prev
S .= g-closure(move(S,a))
a = nextchar()
end do
if S,,., N F# < then
execute actionin S,
return “yes’

else return “no”

30

The Subset Construction
Algorithm

Initially, e-closure(s,) 1s the only state in Dsfafes and it 1s unmarked
while there 1s an unmarked state 7' 1n Dstates do

mark T

for each input symbol ¢ € 2. do
U := e-closure(move(T,a))
if U 1s not 1n Dstates then

add U as an unmarked state to Dstates

end if
Dtran|T,a]l .= U

end do

end do

31

Subset Construction Example

Dstates

A=1{0,1,2,4,7}
B=1{1,2,3,4,6,7,8}
C={1,2,4,5,6,7}
D=1{1,2,4,5,6,7,9}
E=1{1,2,4,5,6,7,10} 32

Subset Construction Example

Dstates
A=1{0,1,3,7}
B=1{2,4,7}
C=1{8}

D= {7}

E = {5,8}
F={6,8}3;

Minimizing the Number of
States of a DFA

34

From Regular Expression to
DFA Directly

> The “Important states” of an NFA are
those without an e-transition, that is if
move({s},a) # @ for some a then s is an
Important state

> The subset construction algorithm uses
only the important states when it
determines
g-closure(move(T,a))

55

From Regular Expression to
DFA Directly (Algorithm)

> Augment the regular expression r with a
special end symbol # to make accepting
states important: the new expression IS r#

> Construct a syntax tree for r#

> Traverse the tree to construct functions
nullable, firstpos, lastpos, and followpos

36

From Reqgular Expression to DFA
Directly: Syntax Tree of (ajb)*abb#

—> @

N
\ 6

/
\ : \

\ position
\ number
(for leafs,#¢€)

concatenation

closure /

.
>

//

/\

%
alternation |

From Reqgular Expression to DFA
Directly: Annotating the Tree

> nullable(n): the subtree at node n generates
languages including the empty string

> firstpos(n): set of positions that can match the
first symbol of a string generated by the subtree
at node n

> lastpos(n): the set of positions that can match
the last symbol of a string generated be the
subtree at node n

> followpos(i): the set of positions that can follow
position i in the tree

38

From Reqgular Expression to DFA
Directly: Annotating the Tree

Node n nullable(n) firstpos(n) lastpos(n)
Leafe true % %)
Leafi false {i} {i}
| nullable(c,) firstpos(c,) lastpos(c,)
/\ or U U
C C, nullable(c,) firstpos(c,) lastpos(c,)
. stletitelie) if nullable(c,) then | if nullable(c,) then
/A and firstpos(c,) Y lastpos(c;) U
¢ ¢ nullable(c,) Jirsipos(cy) lasiposicy)
: 2 2 else firstpos(c,) else lastpos(c,)
%
| true firstpos(c,) lastpos(c)

39]

From Reqgular Expression to DFA

Directly: Syntax Tree of (ajb)*abb#

nullable

Z10)

From Regular Expression to
DFA Directly: followpos

for each node » 1n the tree do
if 1s a cat-node with left child ¢, and right child ¢, then
for each i in lastpos(c,) do
followpos(i) = followpos(i) U firstpos(c,)
end do
else if » 1s a star-node
for each i in lastpos(n) do
followpos(i) = followpos(i) U firstpos(n)
end do
end if
end do

41

From Regular Expression to
DFA Directly: Algorithm

S, = firstpos(root) where root 1s the root of the syntax tree
Dstates := {s,} and 1s unmarked

while there 1s an unmarked state 7 1n Dstates do
mark T

for each input symbol a € 2. do
let U be the set of positions that are 1n followpos(p)
for some position p in T,
such that the symbol at position p 1s a
if U 1s not empty and not in Dstates then
add U as an unmarked state to Dstates
end if
Dtran|Ta]l = U
end do
end do 2

From Regular Expression to
DFA Directly: Example

Node followpos

1 (1,2,3}

123 . >@ ~@—>F—>®

DN | [[W [

{5}
{6}
' I
b b
sar @ . @@ "
D) :

a

43

Time-Space Tradeoffs

Space Time
Automaton
(worst case) | (worst case)
NFA o(lrly | odrlxlxl)
DFA 02 o(|x|)

44

Thank you

