
COMPILERS

Bibliography:

Alfred V. Aho, Ravi Sethi, Jeffrey D.

Ullman: Compilers: Princiles,

Techniques, and Tools. Addison-

Wesley 1986, ISBN 0-201-10088-6

http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/a/Aho:Alfred_V=.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/s/Sethi:Ravi.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/u/Ullman:Jeffrey_D=.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/u/Ullman:Jeffrey_D=.html

Bibliography:

Alfred V. Aho, Monica S. Lam, Ravi

Sethi, Jeffrey D. Ullman: Compilers:

Princiles, Techniques, and Tools.

Addison-Wesley 2007, ISBN 0-321-

48681-1

http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/a/Aho:Alfred_V=.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/s/Sethi:Ravi.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/s/Sethi:Ravi.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/u/Ullman:Jeffrey_D=.html

5

Compilers

 A compiler is a program that can read a

program in one language - the source

language - and translate it into an

equivalent program in another language -

the target language.

What Do Compilers Do

6

 A compiler acts as a translator,

transforming human-oriented programming

languages

into computer-oriented machine languages.

 Ignore machine-dependent details for programmer

Programming

Language

(Source)
Compiler

Machine

Language

(Target)

What Do Compilers Do
Compilers may generate three types of

code:

 Pure Machine Code

• Machine instruction set without assuming the

existence of any operating system or library.

• Mostly being OS or embedded applications.

 Augmented Machine Code

• Code with OS routines and runtime support

routines.

7

What Do Compilers Do
Compilers may generate three types of

code:

 Virtual Machine Code

• Virtual instructions, can be run on any architecture

with a virtual machine interpreter or a just-in-time

compiler

• Ex. Java

8

9

Compilers

 An important role of the compiler is to

report any errors in the source program

that it detects during the translation

process.

What Do Compilers Do
 Another way that compilers

differ from one another is in the format of

the target machine code they generate:

 Assembly or other source format

 Relocatable binary

• Relative address

• A linkage step is required

 Absolute binary

• Absolute address

• Can be executed directly

10

11

Compilers

 If the target program is an executable

machine-language program, it can then be

called by the user to process inputs and

produce outputs

12

Compilers

 An interpreter is another common kind of

language processor. Instead of producing

a target program as a translation, an

interpreter appears to directly execute the

operations specified in the source program

on inputs supplied by the user

14

Compilers

 The machine-language target program

produced by a compiler is usually much

faster than an interpreter at mapping

inputs to outputs .

 An interpreter, however, can usually give

better error diagnostics than a compiler,

because it executes the source program

statement by statement.

15

Compilers

 Java language processors combine

compilation and interpretation.

 Java source program may first be

compiled into an intermediate form called

bytecodes. The bytecodes are then

interpreted by a virtual machine.

16

Compilers

 A hybrid compiler

17

 Any compiler must perform two major tasks

 Analysis of the source program

 Synthesis of a machine-language program

The Structure of a Compiler

Compiler

Analysis Synthesis

The Structure of a Compiler

18

Scanner Parser
Semantic

Routines

Code

Generator

Optimizer

Source

Program Tokens Syntactic

Structure

Symbol and

Attribute

Tables

(Used by all Phases of The Compiler)

(Character

Stream)
Intermediate

Representation

Target machine code

19

Compilers

 In addition to a compiler, several other

programs may be required to create an

executable target program.

20

Compilers

 A source program may be divided into

modules stored in separate files.

 The task of collecting the source program

is sometimes entrusted to a separate

program, called a preprocessor.

 The preprocessor may also expand

shorthands, called macros, into source

language statements.

21

A language-processing system

 Source program

 Preprocessor

 Compiler

Modified source program

Target assembly program

22

A language-processing system

 Target assembly program

 Assembler

 Linker/Loader

Relocatable machine code

Target machine code

Library files

Relocatable object files

23

Phases of a compiler

 Character stream

 Lexical Analyzer

 Syntax Analyzer

Token stream

Syntax tree

24

Phases of a compiler

 Syntax tree

 Semantic Analyzer

 Intermediate Code

 Generator

Syntax tree

Intermediate representation

25

Phases of a compiler

 Intermediate representation

 Machine Independent

 Code Generator

 Code

 Generator

Intermediate representation

Target machine code

26

Phases of a compiler

 Target machine code

 Machine Dependent

 Code Generator

Target machine code

Symbol

 Tables

27

Lexical Analysis

 The lexical analyzer reads the stream of

characters making up the source program

and groups the characters into meaningful

sequences called lexemes.

 For each lexeme, the lexical analyzer

produces as output a token of the form:

 <token-name, attribute-value>

28

Lexical Analysis

 For example, suppose a source program

contains the assignment statement

 position = i n i t i a l + r a t e * 60

 The characters in this assignment could

be grouped into the following lexemes and

mapped into the following tokens passed

on to the syntax analyzer:

29

Lexical Analysis

 1. position is a lexeme that would be

mapped into a token <id, 1> where id

 is an abstract symbol standing for identifier

and 1 points to the symbol-table entry for

position.

 The symbol-table entry for an identifier

holds information about the identifier, such

as its name and type.

30

Lexical Analysis

 2. The assignment symbol = is a lexeme

that is mapped into the token < = >.

 Since this token needs no attribute-value,

we have omitted the second component.

31

Lexical Analysis

 3. initial is a lexeme that is mapped into

the token <id, 2>, where 2 points to the

symbol-table entry for initial

32

Lexical Analysis

 4. + is a lexeme that is mapped into the

token <+>.

 5. rate is a lexeme that is mapped into the

token <id, 3>, where 3 points to the

symbol-table entry for rate .

33

Lexical Analysis

 6. * is a lexeme that is mapped into the

token <*> .

 7. 60 is a lexeme that is mapped into the

token <60>

34

Lexical Analysis

 After lexical analysis, we have

35

Syntax Analysis

 The parser uses the first components of

the tokens produced by the lexical

analyzer to create an intermediate

representation that depicts the

grammatical structure of the token stream.

36

Syntax Analysis

 A typical representation is a syntax tree in

which each interior node represents an

operation and the children of the node

represent the arguments of the operation.

37

Syntax Analysis

38

Semantic Analysis

 The semantic analyzer uses the syntax

tree and the information in the symbol

table to check the source program for

semantic consistency with the language

definition.

 It also gathers type information and saves

it in either the syntax tree or the symbol

table, for subsequent use during

intermediate-code generation.

39

Semantic Analysis

 An important part of semantic analysis is

type checking, where the compiler

 checks that each operator has matching

operands.

 For example, many programming

language definitions require an array index

to be an integer; the compiler must report

an error if a floating-point number is used

to index an array.

40

Semantic Analysis

 The language specification may permit

some type conversions called coercions.

 For example, a binary arithmetic operator

may be applied to either a pair of integers

or to a pair of floating-point numbers.

41

Semantic Analysis

 In the Figure on the next slide, the

operator inttofloat, which explicitly

converts its integer argument into a

floating-point number.

42

Semantic Analysis

43

Intermediate Code Genaration

 In the process of translating a source

program into target code, a compiler may

 construct one or more intermediate

representations, which can have a variety

 of forms.

 Syntax trees are a form of intermediate

representation; they are commonly used

during syntax and semantic analysis.

44

Intermediate Code Genaration

 An intermediate form, called three-address

code, consists of a sequence of assembly-

like instructions with three operands

 per instruction:

 t1 = i n t t o f l o a t (60)

 t 2 = id3 * t1

 t 3 = id2 + t 2

 id1 = t 3

45

Intermediate Code Genaration

46

Code Optimization

 The machine-independent code-

optimization phase attempts to improve

the intermediate code so that better target

code will result.

 Usually better means faster, but other

objectives may be desired, such as shorter

code, or target code that consumes less

power.

47

Code Optimization

48

Code Generation

 The code generator takes as input an

intermediate representation of the source

 program and maps it into the target

language.

 If the target language is machine code,

registers or memory locations are selected

for each of the variables used by the

program.

49

Code Generation

 Then, the intermediate instructions are

translated into sequences of machine

instructions that perform the same task.

 A crucial aspect of code generation is the

judicious assignment of registers to hold

variables.

50

Code Generation

51

Symbol Table

 The symbol table is a data structure

containing a record for each variable

 name, with fields for the attributes of the

name.

 The data structure should be designed to

allow the compiler to find the record for

each name quickly and to store or retrieve

data from that record quickly.

52

Grouping Phases into Passes

 The discussion of phases deals with the

logical organization of a compiler.

 In an implementation, activities from

several phases may be grouped together

 into a pass that reads an input file and

writes an output file.

53

Grouping Phases into Passes

 For example, the front-end phases of

lexical analysis, syntax analysis, semantic

analysis, and intermediate code

generation might be grouped together into

one pass.

Code optimization might be an optional

pass. Then there could be a back-end

pass consisting of code generation for a

particular target machine.

54

Thank you

