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Compilers 

 A compiler is a program that can read a 

program in one language - the source 

language - and translate it into an 

equivalent program in another language - 

the target language. 



What Do Compilers Do 
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 A compiler acts as a translator,  

transforming human-oriented programming 

languages  

into computer-oriented machine languages. 

 Ignore machine-dependent details for programmer 

Programming  

Language 

(Source) 
Compiler 

Machine 

Language 

(Target) 



What Do Compilers Do 
Compilers may generate three types of 

code: 

 Pure Machine Code 

• Machine instruction set without assuming the 

existence of any operating system or library. 

• Mostly being OS or embedded applications. 

 Augmented Machine Code 

• Code with OS routines and runtime support 

routines. 
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What Do Compilers Do 
Compilers may generate three types of 

code: 

 Virtual Machine Code 

• Virtual instructions, can be run on any architecture 

with a virtual machine interpreter or a just-in-time 

compiler 

• Ex. Java 
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Compilers 

 An important role of the compiler is to 

report any errors in the source program 

that it detects during the translation 

process. 



What Do Compilers Do 
 Another way that compilers  

differ from one another is in the format of 

the target machine code they generate: 

 Assembly or other source format 

 Relocatable binary 

• Relative address 

• A linkage step is required 

 Absolute binary 

• Absolute address 

• Can be executed directly 
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Compilers 

 If the target program is an executable 

machine-language program, it can then be 

called by the user to process inputs and 

produce outputs 
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Compilers 

 An interpreter is another common kind of 

language processor. Instead of  producing 

a target program as a translation, an 

interpreter appears to directly execute the 

operations specified in the source program 

on inputs supplied by the user 
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Compilers 

 The machine-language target program 

produced by a compiler is usually much 

faster than an interpreter at mapping 

inputs to outputs .  

 An interpreter, however, can usually give 

better error diagnostics than a compiler, 

because it executes the source program 

statement by statement. 
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Compilers 

 Java language processors combine 

compilation and interpretation.  

 Java source program may first be 

compiled into an intermediate form called 

bytecodes. The bytecodes are then 

interpreted by a virtual machine. 
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Compilers 

 A hybrid compiler 
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 Any compiler must perform two major tasks 

 

 

 

 

 

 

 Analysis of the source program 

 Synthesis of a machine-language program 

The Structure of a Compiler 

Compiler 

Analysis Synthesis 



The Structure of a Compiler 
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Compilers 

 In addition to a compiler, several other 

programs may be required to create an 

executable target program. 
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Compilers 

 A source program may be divided into 

modules stored in separate files.  

 The task of collecting the source program 

is sometimes entrusted to a separate 

program, called a preprocessor. 

 The preprocessor may also expand 

shorthands, called macros, into source 

language statements. 
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A language-processing system  

 

                                              Source program 

           Preprocessor 

              Compiler 

Modified source program 

Target assembly program 
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A language-processing system  

 

                                         Target assembly program 

 

           Assembler 

              Linker/Loader 

Relocatable machine code 

Target  machine  code 

Library files 

Relocatable object files 
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Phases of a compiler 

 

                                              Character stream 

    Lexical   Analyzer 

     Syntax  Analyzer 

Token stream 

Syntax tree 
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Phases of a compiler 

 

                                              Syntax tree 

   Semantic   Analyzer 

     Intermediate Code    

           Generator 

Syntax tree 

Intermediate representation 
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Phases of a compiler 

 

                                          Intermediate representation 

 

   Machine Independent   

      Code Generator 

               Code    

           Generator 

Intermediate representation 

Target  machine code 
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Phases of a compiler 

 

                                          Target  machine code 

 

 
   Machine  Dependent   

      Code Generator 

Target  machine code 

Symbol    

  Tables 
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Lexical Analysis 

 The lexical analyzer reads the stream of 

characters making up the source program 

and groups the characters into meaningful 

sequences called lexemes.  

 For each  lexeme, the lexical analyzer 

produces as output a token of the form: 

 

   <token-name, attribute-value> 
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Lexical Analysis 

 For example, suppose a source program 

contains the assignment statement 

 

   position = i n i t i a l + r a t e * 60 

 The characters in this assignment could 

be grouped into the following lexemes and 

mapped into the following tokens passed 

on to the syntax analyzer: 
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Lexical Analysis 

 1. position is a lexeme that would be 

mapped into a token <id, 1> where id 

   is an abstract symbol standing for identifier 

and 1 points to the symbol-table entry for 

position.  

  The symbol-table entry for an identifier 

holds information about the identifier, such 

as its name and type. 
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Lexical Analysis 

 2. The assignment symbol = is a lexeme 

that is mapped into the token < = >. 

 Since this token needs no attribute-value, 

we have omitted the second component.  
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Lexical Analysis 

 3. initial  is a lexeme that is mapped into 

the token <id, 2>, where 2 points to the 

symbol-table entry for initial  
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Lexical Analysis 

 4. + is a lexeme that is mapped into the 

token <+>. 

 5. rate is a lexeme that is mapped into the 

token <id, 3>, where 3 points to the 

symbol-table entry for rate . 
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Lexical Analysis 

 6. * is a lexeme that is mapped into the 

token <*> . 

 7. 60 is a lexeme that is mapped into the 

token <60> 
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Lexical Analysis 

 After lexical analysis, we have 
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Syntax  Analysis 

 The parser uses the first components of 

the tokens produced by the lexical 

analyzer  to  create an  intermediate 

representation that depicts the 

grammatical structure of the token stream. 
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Syntax  Analysis 

 A typical representation is a syntax tree in 

which each interior node represents an 

operation and the children of the node 

represent the arguments of the operation. 
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Syntax  Analysis 
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Semantic  Analysis 

 The semantic analyzer uses the syntax 

tree and the information in the symbol 

table to check the source program for 

semantic consistency with the language 

definition. 

  It also gathers type information and saves 

it in either the syntax tree or the symbol 

table, for subsequent use during 

intermediate-code generation. 
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Semantic  Analysis 

 An important part of semantic analysis is 

type checking, where the compiler 

  checks that each operator has matching 

operands. 

  For example, many programming 

language definitions require an array index 

to be an integer; the compiler must report 

an error if a floating-point number is used 

to index an array. 
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Semantic  Analysis 

 The language specification may permit 

some type conversions called coercions. 

 For example, a binary arithmetic operator 

may be applied to either a pair of integers 

or to a pair of floating-point numbers. 
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Semantic  Analysis 

 In the Figure on the next slide, the 

operator inttofloat, which explicitly 

converts its integer argument into a 

floating-point number. 
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Semantic  Analysis 
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Intermediate Code Genaration 

 In the process of translating a source 

program into target code, a compiler may 

   construct one or more intermediate 

representations, which can have a variety 

   of forms.  

 Syntax trees are a form of intermediate 

representation; they are commonly used 

during syntax and semantic analysis. 
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Intermediate Code Genaration 

 An intermediate form, called three-address 

code, consists of a sequence of assembly-

like instructions with three operands 

   per instruction: 

   t1 = i n t t o f l o a t (60) 

   t 2 = id3 * t1 

   t 3 = id2 + t 2 

   id1 = t 3 
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Intermediate Code Genaration 
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Code Optimization 

 The machine-independent code-

optimization phase attempts to improve 

the intermediate code so that better target 

code will result. 

  Usually better means faster, but other 

objectives may be desired, such as shorter 

code, or target code that consumes less 

power. 
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Code Optimization 
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Code Generation 

 The code generator takes as input an 

intermediate representation of the source 

   program and maps it into the target 

language. 

  If the target language is machine code, 

registers or memory locations are selected 

for each of the variables used by the 

program. 
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Code Generation 

 Then, the intermediate instructions are 

translated into sequences of machine 

instructions that perform the same task.  

 A crucial aspect of code generation is the 

judicious assignment of registers to hold 

variables. 
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Code Generation 
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Symbol Table 

 The symbol table is a data structure 

containing a record for each variable 

   name, with fields for the attributes of the 

name.  

 The data structure should be designed to 

allow the compiler to find the record for 

each name quickly and to store or retrieve 

data from that record quickly. 
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Grouping Phases into Passes 

 The discussion of phases deals with the 

logical organization of a compiler.  

 In an implementation, activities from 

several phases may be grouped together 

   into a pass that reads an input file and 

writes an output file. 
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Grouping Phases into Passes 

 For example, the front-end phases of 

lexical analysis, syntax analysis, semantic 

analysis, and intermediate code 

generation might be grouped together into 

one pass.  

Code optimization might be an optional 

pass. Then there could be a back-end 

pass consisting of code generation for a 

particular target machine. 
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Thank you 


