
Code generation
for SPIM

Topics:

 Assembly language, assemblers

 MIPS R2000 Assembly language

 Instruction set

 MIPS design goals

 Memory & registers

 Instruction formats

 Some MIPS instructions

 Advanced topics

 Macros

 Procedure calls

 I/O

2

Introduction
 Instruction set:

 The complete set of instructions (vocabulary) used by a
machine

 Instruction Set Architecture (ISA):

 An abstract interface between the hardware and the lowest-
level software of a machine

 Includes:

• Necessary information to write correct machine-language
programs

• Specification of instructions, registers, memory size,
...etc.

 We will concentrate on MIPS- ISA

 Used by NEC, Nintendo, Silicon Graphics, Sony, . . .

3

High-Level Language (HLL) Translation

 Compilers generate either machine language or

assembly language object files

4

Object code

Executable code Assembly language program

HLL program

Program Compiler Assembler Linker Computer

Program
library

Assembly Language

 Symbolic representation of the machine language
of a specific processor

 Advantages
 High execution speed

 Smaller code size

 Disadvantages:
 Machine specific

 Long programs

 Less programmer productivity

 Difficult to read, understand, & debug

 Lacks structure

5

Assemblers
 Converts assembly language into machine code

 Input:

 Assembly language program

 Output:

 Object file containing

• Non-executable machine instructions

• Data

• Bookkeeping info

 Two phases:

 Get locations of labels and build the symbol table

 Translate statements into equivalent binary code

 Symbol Table

 Used to help resolve forward & external referencing to
create the object file 6

Translation of a C-Program Into Assembly

 Example: C-Program

#include <stdio.h>

int main (int argc, char *argv[])

{ int i;

 int sum = 0;

 for (i=0; i<= 100; i=i+1)

 sum = sum +i*i;

 printf(“The sum from 0 .. 100 is %d\n”, sum);

}

7

Equivalent Assembly Program (No
Labels)

addiu $29,$29, -32 #add immediate unsigned

sw $31,20($29) # $29 = $sp stack pointer

sw $4,32($29) # $31 = $ra return address

sw $5,36($29) #

sw $0,24($29) # Store relevant values

sw $0,28($29) # onto stack

lw $14,28($29) #

lw $24,24($29) #

multu $14,$14 # multiply unsigned

addiu $8,$14,1

slti $1,$8,101 # set $1 if < immediate

sw $8,28($29)

mflo $15 # move from lo of register

addu $25,$24,$15

bne $1,$0,-9

sw $25,24($29)

lui $4,4096 # load upper immediate

lw $5,24($29)

jal 1048812 # jump & link

addiu $4,$4,1072

lw $31,20($29)

addiu $29,$29,32

jr $31 # jump register

move $2, $0 8

Equivalent Assembly Program (Labeled)
 .text

 .align 2

 .globl main

main:

 subu $sp,$sp, 32 # increment stack by a stack frame

 sw $ra,20($sp) #Save return address

 sd $a0,32($sp) # pseudo-instruction (Save double-word)

 sw $0,24($sp)

 sw $0,28(sp)

loop:

 lw $t6,28($sp)

 mul $t7,$t6,$t6

 lw $t8,24($sp)

 addu $t9,$%8,$t7

 sw $t9,24($sp)

 addu $t0,$t6,1

 sw $t0,28($sp)

 ble $t0,100,loop

 la $a0,str # Pseudo-instruction (Load address)

 lw $a1,24($sp)

 jal printf # Jump & link

 move $v0,$0

 lw $ra,20($sp)

 addu $sp,$sp,32

 jr $ra

 .data

 .align0 # Turn off automatic alignment

str:

 .asciiz “The sum from 0..100 is %d\n”

9

Instruction Design

 Instruction length:

 Variable length instructions:

• Assembler needs to keep track of all instruction sizes to

determine the position of the next instruction

 Fixed length instructions:

• Require less housekeeping

 Number of operands

 Depend on type of instruction

10

SPIM

 Software simulator for running MIPS R-Series

processors’ programs

 Why use a simulator?

 MIPS workstations

• Not always available

• Difficult to understand & program

 Simulator

• Better programming environment

• Provide more features

• Easily modified

11

MIPS Processors

 Addressing modes:

 Describe the manner in which addresses for memory

accesses are constructed

 MIPS is a “Load-Store” architecture

• Only load/store instructions access memory

 Data should be aligned (usually multiple of 4 bytes)

 More details in MIPS Quick Reference

 https://imagination-technologies-cloudfront-

assets.s3.amazonaws.com/documentation/MD00565-

2B-MIPS32-QRC-01.01.pdf

12

http://csjava.occ.cccd.edu/~pharao/CS116-MIPS-Reference.html
http://csjava.occ.cccd.edu/~pharao/CS116-MIPS-Reference.html

Addressing Modes

 Register addressing

 Operand is a register

 Value is the contents of the register

 Base or displacement addressing

 Operand is at the memory location whose address is
the sum of a register and a constant in the instruction

 Immediate addressing

 Operand is a constant within the instruction itself

 Immediate

 PC-relative addressing

 Address is the sum of the PC and a constant in the
instruction

 Pseudo-direct addressing

 Jump address is the 26 bits of the instruction
concatenated with the upper bits of the PC

13

14

Addressing Modes

Memory Organization

 Memory is viewed as a large,

single-dimensional array

 To access a word, memory

address is supplied by

instruction

 Memory address is an index to

the array, starting at 0

15

0

1

2

3

4

5

6

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

Byte & Word Addressing
 Index points to a byte of memory

 Most data items use "words"

 Words are aligned at word boundaries

 For MIPS, a word is 32 or 64 bits

 They are usually called MIPS =32 &

MIPS =64 respectively

 We will only consider MIPS32

 MIPS32 (4 bytes) can access

• 232 bytes with byte addresses

from 0 to 232-1, or

• 230 words with byte addresses 0,

4, 8, ... 232-4

16

0

4

8

12

...

32 bits of data

32 bits of data

32 bits of data

32 bits of data

Registers hold

32 bits of data

MIPS Instruction Formats

MIPS has 3 instruction formats

 R-type (Register) format

 J-type (Jump) format

 I-type (Immediate) format

 All MIPS instruction formats are 32 bits long

 Example: add $t0, $s1, $s2

Registers can be written in their symbolic or

numeric forms
• $t0=8, $s1=17, $s2=18

 17

R-Format (Register) Instructions

 op: Operation code (6-bits)

 rs; 1st source register (5-bits)

 rt: 2nd source register (5-bits)

 rd: Destination register (5-bits)

 shamt: Shift amount (5-bits)

 funct: Function code (6-bits)
 The first (op) & last fields (funct), combined, indicate the type of

instruction

 Second (rs) & third (rt) fields are the source operands

 Fourth field (rd) is the destination operand

18

000000 10001 10010 01000 00000 100000

0 17 18 8 0 32

 op rs rt rd shamt funct

Registers Names & Numbers

19

SPIM

 Software simulator for running MIPS R-Series processors’

programs

 SPIM Simulator simulates most of the functions of three MIPS

processors

 More about SPIM will be discussed in the labs

 Why use a simulator?

 MIPS workstations

• Not always available

• Difficult to understand & program

 Simulator

• Better programming environment

• Provide more features

• Easily modified
20

MIPS Design
 Goals

 Maximize performance

 Minimize cost

 Reduce design time

 How can we reach these goals?

 Principles

1. Simplicity favors regularity

2. Smaller is faster

3. Good design demands good compromises

4. Make common case fast

21

 Simplicity Favors Regularity

 Three operands keeps the instruction logically

simple

 Examples:

 C Code Assembly Equivalent

 A = b + c add a, b, c

 b = x * y mul b, x, y

 a = b + 42 addi a, b, 42

22

Simplicity Favors Regularity

 A more complex example

C Code Assembly equivalent

 f = (g+h) – (i+j) add $t0, g, h

 add $t1, i, j

 sub f, $t0, $t1

 Notes

 Consider the operator precedence

• () before -

 This is a pseudo code

• Cannot use the symbols g and h

• Values should exist in some registers, then use register

names or numbers
23

 Simplicity Favors Regularity

 More Examples:
Using variable names

 C code:
A = B + C + D + E

 MIPS pseudocode:

 add A, B, C # add B + C,put result into A

 add A, A, D # put B + C + D into A

 add A, A, E # put B + C + D + E into A

 Syntax:

 add rd, rs, rt # destination, suorce1, source2

 Exercise
 Assume that A, B, C, D, & E are stored in registers $s0, …

$s4, rewrite the code using registers’ names
24

 Simplicity Favors Regularity

 More Examples:

 Using symbolic register names

• C code:

 A = B + C + D;

 E = F - A;

• MIPS code:

 add $t0, $s1, $s2

 add $s0, $t0, $s3

 sub $s4, $s5, $s0

25

Why are register faster?

 Where are the registers?

26

Processor I/O

Control

Datapath

Memory

Input

Output

Memory Access

 Data transfer instructions are used to transfer data between registers and

memory

 They must supply a memory address

 Example

 C Code

• g = h + A[8]

 Assumptions

• Register $s3 contains the base address of array A

• 8 is the offset of the 8th element of the array

 MIPS equivalent

lw $t0, 8($s3) # Temporary register $t0 gets A[8]

add $s1, $s2, $t0 # g = h + A[8]

27

Instruction Format

 Compromise between providing for larger
addresses & constants in instruction and keeping all
instructions the same length

 Addresses needs more than 5-bits
 Introduce a new type of instruction format for data

transfer instructions (I-format)
 We have two options:

• Change instruction length for different types of instructions, or

• Keep instruction length & change field format

• Example: lw $t0, 32($s2)

28

 op rs rt 16 bit address

35 18 8 32

Memory Access

 lw instruction can load words within (+/-) 215

immediately

 The meaning of the field ($rt) changes:

 for lw: destination register

 for sw: source register

 Each format is assigned a set of values of the op-

field from which it recognizes how to treat the

instruction (R- or I-format type) and how many

operands are involved

29

Control Flow Instructions

 The ability to make decisions

 Change the control flow (i.e., "next" instruction to be
executed)

 Types:
 Conditional

 Unconditional

 See Appendix for more comparison & branch

instructions

 In high-level languages, you don’t have to write explicit

labels

 Compilers create branches & labels that don’t appear

in the HLL 30

Unconditional Branches
 Forms:

 j label # jump to label

 jr rs #jump to addr stored in register

31

Conditional Branches

 Forms:

 beq (Branch on equal)

 bne (Branch on not equal)

 slt (Set on less than)

 Examples:

 bne $t0,$t1,L # go to L if $t0$t1

 beq $t0,$t1,L # go to L if $t0=$t1

 slt $t0,$t1,$t2 # $t0=1 if $t1<$t2, $t0=0 otherwise

32

More Control Flow Instructions

 Branch-if-less-than

 slt $t0,$s1,$s2 if $s1 < $s2 then

 $t0 = 1

 else

 $t0 = 0

 We can use this instruction to build

 blt $s1, $s2, Label

 blt is a pseudo-instruction meaning “branch if less than”

 We can now build general control structures

 Note that the assembler needs a register to do this

33

From C to MIPS – Array Manipulation

 Arrays with Constant Index

 C code: A[8] = h + A[8];

 Equivalent MIPS code:

• Assumptions:

 $s3 contains starting address of the array A

 $s2 contains the value of h

 lw $t0,32($s3) # $t0 gets A[8]

 # offset =8 x 4 =32

 add $t0,$s2,$t0 # Add h

 sw $t0,32($s3) # store value back in A[8]

34

From C to MIPS – Logical Operations

 Shifts

 Bitwise AND

 Bitwise OR

 Bitwise NOR

35

From C to MIPS – Logical Operations

 Shifts

 Left/right (sll, srl)

 Can be used to represent

multiplication/division for multiples of 2

 Example

Sll $t2, $s0, 4 # reg $t2 = reg $s0 << 4 bits

36

From C to MIPS – Logical Operations
 Bitwise AND

 Bit by bit operation

 Leaves a 1 in the result only if both bits of the

operands are 1

 Example:

 Assumption

$t2 = 0000 0000 0000 0000 0000 1101 0000 0000

$t1 = 0000 0000 0000 0000 0011 1100 0000 0000

 Operation

 and $t0, $t1, $t2 # reg $t0 = reg $t1 & reg $t2

 Result

$t0 = 0000 0000 0000 0000 0000 1100 0000 0000

37

From C to MIPS – Logical Operations
 Bitwise OR

 Bit by bit operation

 Leaves a 1 in the result only if any bit of the operands

is 1

 Example:

 Assumption

$t2 = 0000 0000 0000 0000 0000 1101 0000 0000

$t1 = 0000 0000 0000 0000 0011 1100 0000 0000

 Operation

 or $t0, $t1, $t2 # reg $t0 = reg $t1 | reg $t2

 Result

$t0 = 0000 0000 0000 0000 0011 1101 0000 0000

38

From C to MIPS – Logical Operations
 Bitwise NOR

 Bit by bit operation

 Inverse of OR

 Example:

 Assumption

$t2 = 0000 0000 0000 0000 0000 1101 0000 0000

$t1 = 0000 0000 0000 0000 0011 1100 0000 0000

 Operation

 and $t0, $t1, $t2 # reg $t0 = ~ (reg $t1 | reg $t2)

 Result

$t0 = 1111 1111 1111 1111 1100 0010 1111 1111

39

From C to MIPS – Array Manipulation

 Exercise:

 What should change in the previous MIPS

code for EACH OF the following C-

statements?

A[300] = h + A[300];

A[16] = h + A [8];

A[i] = h + A [i];

 Write the equivalent machine code in each

case
40

From C to MIPS – Array Manipulation

 Arrays with Variable Index
 C code:

g = h + A [i];

 Equivalent MIPS code

41

From C to MIPS – Array Manipulation

 Arrays with Variable Index
 C code:

g = h + A [i];

 Equivalent MIPS code
• Assumption: $s4 contains I

add $t1, $s4, $s4

add $t1, $t1, $t1

add $t1, $t1, $s3

lw $t0, 0($t1)

add $s1, $s2, $t0 42

From C to MIPS – Array Manipulation
 Arrays with Variable Index

 C code:
g = h + A [i];

 Equivalent MIPS code
• Assumption: $s4 contains i

 # Multiply index by 4 due to byte addressing

 # Store the value in $t1

add $t1, $s4, $s4 # $t1 = 2 *i

add $t1, $t1, $t1 # $t1 = 4 *i

 # Base is stored in $s3

 # Get address of A[i]

add $t1, $t1, $s3 #$t1=Address(A[i])

 #Load A[i] into temporary register

lw $t0, 0($t1) # $t0 = A[i]

 # Add A[i] to h

add $s1, $s2, $t0 # $s1 = h + A[i]

 # $s1 corresponds to g
43

From C to MIPS - If-Statement

 C-Code:

if (i==j)

 h = i + j;

 Equivalent MIPS Code:

 bne $s0, $s1, Label

 add $s3, $s0, $s1

Label:

44

 Assumptions:
$s0 = i

$s1 = j

$s3 = h

From C to MIPS- If-else statement

 C statement

 if (i != j)

 f = g + h;

else

 f = g - h;

 Equivalent MIPS code:

 beq $s0, $s1, Else

 add $s2, $s3, $s4

 j Exit

Else: sub $s2, $s3, $s4

Exit: ... 45

 Assumptions:
$s0 = i $s1 = j
$s2 = f $s3 = g
$s4 = h

From C to MIPS – For Loops
 C-Code

 for (; i != h; i = i+j)

 g = g + a[i];

 Equivalent MIPS code:

46

 Assumptions:
$s1 = g $s2 = h

$s3 = i $s4 = j

$s5 = base address of array A

From C to MIPS – For Loops

 C-Code

 for (; i != h; i = i+j)

 g = g + a[i];

 Equivalent MIPS code:

Loop: add $t1,$s3,$s3 # $t1 = 2 * i

 add $t1,$t1,$t1 # $t1 = 4 * i

 add $t1,$t1,$s5 # $t1 = addr(A[i])

 lw $t0,0($t1) # $t0 = A[i]

 add $s1,$s1,$t0 #g = g +A[i]

 add $s3,$s3,$s4 #i = i + j

 bne $s3,$s2,Loop #go to Loop if ih

Note: Check if this is not a do-while loop!!!

47

 Assumptions:
$s1 = g $s2 = h

$s3 = i $s4 = j

$s5 = base address of array A

From C to MIPS – While Loop
 C-Code

 while (a[i] == k)

 i = i + j;

 MIPS Equivalent

48

 Assumptions:
$s3 = i
$s4 = j
$s5 = k
$s6 = Base address of A

From C to MIPS – While Loop
 C-Code

 while (a[i] == k)

 i = i + j;

 MIPS Equivalent

Loop:

 sll $t1, $s3, 2 # $t1 = 4 * i

 add $t1, $t1, $s6 # $t1=addr(A[i])

 lw $t0, 0($t1) # $t0 = A[i]

 bne $t0, $s5, Exit # goto Exit if A[i]k

 add $s3, $s3, $s4 # i=i+j

 j Loop # Loop back

Exit: ... # Next statement

 49

 Assumptions:
$s3 = i
$s4 = j
$s5 = k
$s6 = Base address of A

From C to MIPS - Less Than Test

C-Code:

 if (a < b) goto Less;

 Equivalent MIPS code :

 slt $t0, $s0, $s1 # $t0=1 if $s0 < $s1

 # ($s0=a, $s1=b)

 bne $t0,$zero,Less #goto Less if $t00

50

From C to MIPS - Switch Statement

 The jump register(jr) instruction is used

Unconditional jump to the address given in the

register

 Possibilities

 Convert it into a group of nested if-then-else

statements

 Use a table of addresses (jump address table) for

the instruction sequences and use an index to jump

to the appropriate entry

51

From C to MIPS - Switch Statement

 C-Code:
 switch(k)

 { case 0: f = I + j; break; /* k=0 */

 case 1: f = g + h; break; /* k=1 */

 case 2: f = g - h; break; /* k=2 */

 case 3: f = I - j; break; /* k=3 */

 }

 Steps:
1. Check that k in within limits, otherwise exit

2. From k, find out where to jump to (using index table)

3. After statement execution, jump to Exit label (break)

52

From C to MIPS - Switch Statement

 slt $t3, $s5, $zero # test if k<0 ($s5=k)

 bne $t3, $zero, Exit # go to Exit if k <0

 slt $t3, $s5, $t2 # Test if k<4, $t2=4

 beq $t3, $zero, Exit # go to Exit if k>=4

 add $t1, $s5, $s5 # $t1 = 2*k

 add $t1, $t1, $t1 # $t1=4*k=jump address

 add $t1, $t1, $t4 #$t1=addr(JumpTable[k])

 lw $t0, 0($t1) # $t0=JumpTable[K]

 jr $t0

L0: add $s0, $s3, $s4 # k=0 => f=i+j

 j Exit

L1: add $s0, $s1, $s2 # k=1 => f=g+h

 j Exit

L2: sub $s0, $s1, $s2 # k=2 => f g-h

 j Exit

L3: sub $s0, $s3, $s4 # k=3 => f=i-j

Exit: ... 53

 Assumptions:
$s0 = f, $s1 = g, $s2 = h, $s3 = I, $s4 = j, $s5= k, $t2= 4

Input/Output

We are not going to discuss MIPS I/O

instructions, except what is necessary to

display messages on the console window

 See examples

54

Procedure Calls

Execution of a procedure follows 6 steps

1. Place parameters in a place where the

procedure can access them

2. Transfer control to the procedure

3. Acquire storage resources to the procedure

4. Perform desired task

5. Place result in a place accessible by the

calling program

6. Return control to the point of origin

55

Procedure Calls

MIPS register convention for procedures

 $a0-$a3: 4 arguments registers to pass

parameneters

 $v0-$v1: 2 value registers to return values

 $ra: return address register to return to point

of origin

56

Procedure Calls

MIPS instructions used with procedures

 jal: Jump & Link

• Jump to an address & save address of the

following instruction in $ra register

 jr $ra: Jump to return address

• Jump to the address stored in $ra

57

Procedure Calls

What if more than 4 arguments need to be

transferred?

 Put it onto the stack

 Stack:

 Needs a pointer ($sp) to the most-recently

allocated address, to show where the next

procedure should be allocated

 $sp grows from higher to lower address

• Push: subtract from $sp

• Pop: Add to $sp

58

Example: Leaf Procedure

 Leaf procedure doesn’t call other procedures

 C Code

Int leaf_example (int g, int h, int I, int j)

{

 int f;

 f = (g + h) – (I + j)

 return f;

}

59

Example: Leaf Procedure(1)

 MIPS Equivalent(1)

Leaf_example:

 addi $sp, $sp, -12 # adjust stack to make room for 3 items

 sw $t1, 8($sp) #save $t1 on stack

 sw $t0, 4($sp) # save $t0 on stack

 sw $s0, 0($sp) # save $s0 on stack

 add $t0, $a0, $a1 # $t0 contains g + h

 add $t1, $a2, $a3 # $ t1 contains I + j

 sub $s0, $t0, $t1 # f = $t0 - $t1 = (g+h)-(I-j)

 add $v0, $s0, $zero # return result to calling point = f = ($v0 =
$s0+0)

60

Example: Leaf Procedure(2)

 MIPS Equivalent(2)

$s0, 0($sp) # restore $s0 for caller

 lw $t0, 4($sp) # restore $t0 for caller

 lw $t1, 8($sp) # restore $t1 for caller

 addi $sp, $sp, 12 # adjust stack to delete 3 items

 jr $ra # jump back to calling routine

61

Procedure Call Frame

 Memory block associated with the call, usually saved
onto stack

 Includes

 Argument values

 Registers possibly modified by the procedure

 Local variables

 Stack frame:

 Stack block used to hold a procedure call frame

 Frame pointer ($fp):

 Points to the first word in the frame

 Stack pointer ($sp):

 Points to last word of the frame

62

Procedure Calls

 Before the call:

1. Pass the first 4 arguments to

registers $a0-$a3. The system will

take care of them

2. Remaining arguments, if any, should

be pushed onto stack

3. Save caller-saved registers onto the

stack as well, since the called

function might use those registers

and overwrite their contents

4. Perform jal instruction

 Jump to callee's first instruction

 Save return address in $ra

63

Low address

High address

$fp

$sp

Stack
grow

direction

Procedure Calls

 Before execution of called

procedure:

1. Allocate memory for a

stack frame

2. Save callee-saved

registers in the frame

3. Update frame pointer

64

Local arrays &

 structures (if any)

Saved return address

Saved saved registers
(if any)

Saved argument
registers (if any)

$fp

$sp

Procedure Calls

 Before returning from the

procedure:

1. Place return value, if any, in

$v0 register

2. Restore callee-saved

registers by retrieving their

saved contents from the

stack

3. Pop stack frame to free the

memory used by the

procedure

4. Jump to the return address

stored in $ra
65

Low address

High address

$fp

$sp

Procedure Calls Review

66

After returning from
the procedure

Before executing
the procedure

$sp

Before the call

High address

Low address

Saved return
address

Saved argument
registers (if any)

Saved saves
registers (if any)

Local arrays and
structures (if any)

$fp

$sp

$fp

$sp

$fp

Nested Procedures

One procedure calls another, or calls itself

(recursion)

 Example: Factorial

 C Code

Int fact (int n)

{

 if (n < 1)

 return 1;

 else return (n * fact (n-1));

}
67

Nested Procedures
 Example: Factorial

 MIPS Code

fact:

 addi $sp, $sp, -8 # adjust stack for 2 items

 sw $ra, 4 ($sp) # save return address

 sw $a0, 0 ($sp) # save argument n

 slti $t0, $a0, 1 # # test for n < 1

 beq $t0, $zero, L1 # if n >= 1, goto L1

 addi $v0, $azero, 1 # return 1

 addi $sp, $sp, 8 # pop 2 items off stack

 jr $ra # return to after jal

L1: addi $a0, $a0, -1 # N >=1: argument gets (n-1)

 jal fact # call fact with (n-1)

 lw $a0, 0($sp) # return from jal: restore argument n

 lw $ra, 4 ($sp) # restore return address

 addi $sp, $sp, 8 # adjust stack pointer to pop 2 items

 mul $v0, $a0, $v0 # return n * fact (n-1)

 jr $ra # return to caller

68

Procedure Calls Example
 Example: Factorial

 Main calls Fact(10)

 Stack frame during call of fact(7)

69

m a i n

f a c t (1 0)

f a c t (9)

f a c t (8)

f a c t (7)

Stack

Stack
grow
direction

Old $ra
Old $fp

Old $ra
Old $fp
Old $a0

Old $ra
Old $fp
Old $a0

Old $ra
Old $fp
Old $a0

Old $ra
Old $fp
Old $a0

Allocating New Data on Stack
 Stack is used to store variables local to the

procedure that don’t fit in registers

 Some MIPS software use frame pointer $fp to point
to the first word of the frame of a procedure to allow
reference for local variables

 $fp offers a stable base register within a procedure
for local memory reference

70
Stack before call Stack during call Stack after call

Allocating Space on the Heap
 0000 0000hex:

 First part of the low end is

reserved by the system

 0040 0000hex :

 Followed by the text segment

 1000 0000hex:

 Static data are above the text

segment used for constants &

other static variables

 1000 8000hex:

 Heap hosts dynamic data

structures (e.g. linked lists)

 Stack starts in high-end of

memory & grows down

 Stack & heap grow in opposite

directions

 71

Review - Loading Programs for Execution

1. Determine size of text & data segments from executable file

header

2. Create enough address space for program‘s text & data

segments, in addition to a “stack segment”

3. Copy both instruction & data segments into address space

4. Copy arguments onto stack

5. Initialize Instruction register & stack pointer

6. Copy arguments from stack to registers

7. Call program’s main routine

8. When returning from main program, terminate with exit system

call

72

Review - MIPS instruction Formats

 Simple instructions all 32 bits wide

 Very structured

 Addresses are not 32 bits

Only three instruction formats

73

op 26 bit address

op rs rt rd shamt funct

op rs rt 16 bit address

R

I

J

Review - Branch instructions

bne $t4,$t5,Label # Next instruction is at Label if $t4 $t5

beq $t4,$t5,Label # Next instruction is at Label if $t4 = $t5

 Formats:

 We could specify a register (like lw and sw) and add it

to address

 Most branches are local (principle of locality)

 Use Instruction Address Register (PC = program counter)

 Jump instructions just use high order bits of PC

 address boundaries of 256 MB

74

op rs rt 16 bit address I

Review - Addressing
1. Register addressing:

 Operands are registers

2. Base (Displacement addressing):

 Operand location =

 register + constant (offset) in the instruction

3. Immediate addressing:

 Operand is a constant within the instruction

4. PC-relative addressing:

 Address = PC (program counter)

 + constant in the instruction

5. Pseudo addressing:

 Jump address = 26 bits of the instruction

 + upper bits of the PC

 A single operation can use more than one addressing mode (e.g.
add, addi)

75

Summary

 Instruction complexity is only one variable

 lower instruction count vs. higher CPI / lower clock

rate

Design Principles:

 Simplicity favors regularity

 Smaller is faster

 Good design demands compromise

 Make the common case fast

 Instruction set architecture

 A very important abstraction 76

 Thank you

77

