
Code generation
for SPIM

Topics:

 Assembly language, assemblers

 MIPS R2000 Assembly language

 Instruction set

 MIPS design goals

 Memory & registers

 Instruction formats

 Some MIPS instructions

 Advanced topics

 Macros

 Procedure calls

 I/O

2

Introduction
 Instruction set:

 The complete set of instructions (vocabulary) used by a
machine

 Instruction Set Architecture (ISA):

 An abstract interface between the hardware and the lowest-
level software of a machine

 Includes:

• Necessary information to write correct machine-language
programs

• Specification of instructions, registers, memory size,
...etc.

 We will concentrate on MIPS- ISA

 Used by NEC, Nintendo, Silicon Graphics, Sony, . . .

3

High-Level Language (HLL) Translation

 Compilers generate either machine language or

assembly language object files

4

Object code

Executable code Assembly language program

HLL program

Program Compiler Assembler Linker Computer

Program
library

Assembly Language

 Symbolic representation of the machine language
of a specific processor

 Advantages
 High execution speed

 Smaller code size

 Disadvantages:
 Machine specific

 Long programs

 Less programmer productivity

 Difficult to read, understand, & debug

 Lacks structure

5

Assemblers
 Converts assembly language into machine code

 Input:

 Assembly language program

 Output:

 Object file containing

• Non-executable machine instructions

• Data

• Bookkeeping info

 Two phases:

 Get locations of labels and build the symbol table

 Translate statements into equivalent binary code

 Symbol Table

 Used to help resolve forward & external referencing to
create the object file 6

Translation of a C-Program Into Assembly

 Example: C-Program

#include <stdio.h>

int main (int argc, char *argv[])

{ int i;

 int sum = 0;

 for (i=0; i<= 100; i=i+1)

 sum = sum +i*i;

 printf(“The sum from 0 .. 100 is %d\n”, sum);

}

7

Equivalent Assembly Program (No
Labels)

addiu $29,$29, -32 #add immediate unsigned

sw $31,20($29) # $29 = $sp stack pointer

sw $4,32($29) # $31 = $ra return address

sw $5,36($29) #

sw $0,24($29) # Store relevant values

sw $0,28($29) # onto stack

lw $14,28($29) #

lw $24,24($29) #

multu $14,$14 # multiply unsigned

addiu $8,$14,1

slti $1,$8,101 # set $1 if < immediate

sw $8,28($29)

mflo $15 # move from lo of register

addu $25,$24,$15

bne $1,$0,-9

sw $25,24($29)

lui $4,4096 # load upper immediate

lw $5,24($29)

jal 1048812 # jump & link

addiu $4,$4,1072

lw $31,20($29)

addiu $29,$29,32

jr $31 # jump register

move $2, $0 8

Equivalent Assembly Program (Labeled)
 .text

 .align 2

 .globl main

main:

 subu $sp,$sp, 32 # increment stack by a stack frame

 sw $ra,20($sp) #Save return address

 sd $a0,32($sp) # pseudo-instruction (Save double-word)

 sw $0,24($sp)

 sw $0,28(sp)

loop:

 lw $t6,28($sp)

 mul $t7,$t6,$t6

 lw $t8,24($sp)

 addu $t9,$%8,$t7

 sw $t9,24($sp)

 addu $t0,$t6,1

 sw $t0,28($sp)

 ble $t0,100,loop

 la $a0,str # Pseudo-instruction (Load address)

 lw $a1,24($sp)

 jal printf # Jump & link

 move $v0,$0

 lw $ra,20($sp)

 addu $sp,$sp,32

 jr $ra

 .data

 .align0 # Turn off automatic alignment

str:

 .asciiz “The sum from 0..100 is %d\n”

9

Instruction Design

 Instruction length:

 Variable length instructions:

• Assembler needs to keep track of all instruction sizes to

determine the position of the next instruction

 Fixed length instructions:

• Require less housekeeping

 Number of operands

 Depend on type of instruction

10

SPIM

 Software simulator for running MIPS R-Series

processors’ programs

 Why use a simulator?

 MIPS workstations

• Not always available

• Difficult to understand & program

 Simulator

• Better programming environment

• Provide more features

• Easily modified

11

MIPS Processors

 Addressing modes:

 Describe the manner in which addresses for memory

accesses are constructed

 MIPS is a “Load-Store” architecture

• Only load/store instructions access memory

 Data should be aligned (usually multiple of 4 bytes)

 More details in MIPS Quick Reference

 https://imagination-technologies-cloudfront-

assets.s3.amazonaws.com/documentation/MD00565-

2B-MIPS32-QRC-01.01.pdf

12

http://csjava.occ.cccd.edu/~pharao/CS116-MIPS-Reference.html
http://csjava.occ.cccd.edu/~pharao/CS116-MIPS-Reference.html

Addressing Modes

 Register addressing

 Operand is a register

 Value is the contents of the register

 Base or displacement addressing

 Operand is at the memory location whose address is
the sum of a register and a constant in the instruction

 Immediate addressing

 Operand is a constant within the instruction itself

 Immediate

 PC-relative addressing

 Address is the sum of the PC and a constant in the
instruction

 Pseudo-direct addressing

 Jump address is the 26 bits of the instruction
concatenated with the upper bits of the PC

13

14

Addressing Modes

Memory Organization

 Memory is viewed as a large,

single-dimensional array

 To access a word, memory

address is supplied by

instruction

 Memory address is an index to

the array, starting at 0

15

0

1

2

3

4

5

6

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

Byte & Word Addressing
 Index points to a byte of memory

 Most data items use "words"

 Words are aligned at word boundaries

 For MIPS, a word is 32 or 64 bits

 They are usually called MIPS =32 &

MIPS =64 respectively

 We will only consider MIPS32

 MIPS32 (4 bytes) can access

• 232 bytes with byte addresses

from 0 to 232-1, or

• 230 words with byte addresses 0,

4, 8, ... 232-4

16

0

4

8

12

...

32 bits of data

32 bits of data

32 bits of data

32 bits of data

Registers hold

32 bits of data

MIPS Instruction Formats

MIPS has 3 instruction formats

 R-type (Register) format

 J-type (Jump) format

 I-type (Immediate) format

 All MIPS instruction formats are 32 bits long

 Example: add $t0, $s1, $s2

Registers can be written in their symbolic or

numeric forms
• $t0=8, $s1=17, $s2=18

 17

R-Format (Register) Instructions

 op: Operation code (6-bits)

 rs; 1st source register (5-bits)

 rt: 2nd source register (5-bits)

 rd: Destination register (5-bits)

 shamt: Shift amount (5-bits)

 funct: Function code (6-bits)
 The first (op) & last fields (funct), combined, indicate the type of

instruction

 Second (rs) & third (rt) fields are the source operands

 Fourth field (rd) is the destination operand

18

000000 10001 10010 01000 00000 100000

0 17 18 8 0 32

 op rs rt rd shamt funct

Registers Names & Numbers

19

SPIM

 Software simulator for running MIPS R-Series processors’

programs

 SPIM Simulator simulates most of the functions of three MIPS

processors

 More about SPIM will be discussed in the labs

 Why use a simulator?

 MIPS workstations

• Not always available

• Difficult to understand & program

 Simulator

• Better programming environment

• Provide more features

• Easily modified
20

MIPS Design
 Goals

 Maximize performance

 Minimize cost

 Reduce design time

 How can we reach these goals?

 Principles

1. Simplicity favors regularity

2. Smaller is faster

3. Good design demands good compromises

4. Make common case fast

21

 Simplicity Favors Regularity

 Three operands keeps the instruction logically

simple

 Examples:

 C Code Assembly Equivalent

 A = b + c add a, b, c

 b = x * y mul b, x, y

 a = b + 42 addi a, b, 42

22

Simplicity Favors Regularity

 A more complex example

C Code Assembly equivalent

 f = (g+h) – (i+j) add $t0, g, h

 add $t1, i, j

 sub f, $t0, $t1

 Notes

 Consider the operator precedence

• () before -

 This is a pseudo code

• Cannot use the symbols g and h

• Values should exist in some registers, then use register

names or numbers
23

 Simplicity Favors Regularity

 More Examples:
Using variable names

 C code:
A = B + C + D + E

 MIPS pseudocode:

 add A, B, C # add B + C,put result into A

 add A, A, D # put B + C + D into A

 add A, A, E # put B + C + D + E into A

 Syntax:

 add rd, rs, rt # destination, suorce1, source2

 Exercise
 Assume that A, B, C, D, & E are stored in registers $s0, …

$s4, rewrite the code using registers’ names
24

 Simplicity Favors Regularity

 More Examples:

 Using symbolic register names

• C code:

 A = B + C + D;

 E = F - A;

• MIPS code:

 add $t0, $s1, $s2

 add $s0, $t0, $s3

 sub $s4, $s5, $s0

25

Why are register faster?

 Where are the registers?

26

Processor I/O

Control

Datapath

Memory

Input

Output

Memory Access

 Data transfer instructions are used to transfer data between registers and

memory

 They must supply a memory address

 Example

 C Code

• g = h + A[8]

 Assumptions

• Register $s3 contains the base address of array A

• 8 is the offset of the 8th element of the array

 MIPS equivalent

lw $t0, 8($s3) # Temporary register $t0 gets A[8]

add $s1, $s2, $t0 # g = h + A[8]

27

Instruction Format

 Compromise between providing for larger
addresses & constants in instruction and keeping all
instructions the same length

 Addresses needs more than 5-bits
 Introduce a new type of instruction format for data

transfer instructions (I-format)
 We have two options:

• Change instruction length for different types of instructions, or

• Keep instruction length & change field format

• Example: lw $t0, 32($s2)

28

 op rs rt 16 bit address

35 18 8 32

Memory Access

 lw instruction can load words within (+/-) 215

immediately

 The meaning of the field ($rt) changes:

 for lw: destination register

 for sw: source register

 Each format is assigned a set of values of the op-

field from which it recognizes how to treat the

instruction (R- or I-format type) and how many

operands are involved

29

Control Flow Instructions

 The ability to make decisions

 Change the control flow (i.e., "next" instruction to be
executed)

 Types:
 Conditional

 Unconditional

 See Appendix for more comparison & branch

instructions

 In high-level languages, you don’t have to write explicit

labels

 Compilers create branches & labels that don’t appear

in the HLL 30

Unconditional Branches
 Forms:

 j label # jump to label

 jr rs #jump to addr stored in register

31

Conditional Branches

 Forms:

 beq (Branch on equal)

 bne (Branch on not equal)

 slt (Set on less than)

 Examples:

 bne $t0,$t1,L # go to L if $t0$t1

 beq $t0,$t1,L # go to L if $t0=$t1

 slt $t0,$t1,$t2 # $t0=1 if $t1<$t2, $t0=0 otherwise

32

More Control Flow Instructions

 Branch-if-less-than

 slt $t0,$s1,$s2  if $s1 < $s2 then

 $t0 = 1

 else

 $t0 = 0

 We can use this instruction to build

 blt $s1, $s2, Label

 blt is a pseudo-instruction meaning “branch if less than”

 We can now build general control structures

 Note that the assembler needs a register to do this

33

From C to MIPS – Array Manipulation

 Arrays with Constant Index

 C code: A[8] = h + A[8];

 Equivalent MIPS code:

• Assumptions:

 $s3 contains starting address of the array A

 $s2 contains the value of h

 lw $t0,32($s3) # $t0 gets A[8]

 # offset =8 x 4 =32

 add $t0,$s2,$t0 # Add h

 sw $t0,32($s3) # store value back in A[8]

34

From C to MIPS – Logical Operations

 Shifts

 Bitwise AND

 Bitwise OR

 Bitwise NOR

35

From C to MIPS – Logical Operations

 Shifts

 Left/right (sll, srl)

 Can be used to represent

multiplication/division for multiples of 2

 Example

Sll $t2, $s0, 4 # reg $t2 = reg $s0 << 4 bits

36

From C to MIPS – Logical Operations
 Bitwise AND

 Bit by bit operation

 Leaves a 1 in the result only if both bits of the

operands are 1

 Example:

 Assumption

$t2 = 0000 0000 0000 0000 0000 1101 0000 0000

$t1 = 0000 0000 0000 0000 0011 1100 0000 0000

 Operation

 and $t0, $t1, $t2 # reg $t0 = reg $t1 & reg $t2

 Result

$t0 = 0000 0000 0000 0000 0000 1100 0000 0000

37

From C to MIPS – Logical Operations
 Bitwise OR

 Bit by bit operation

 Leaves a 1 in the result only if any bit of the operands

is 1

 Example:

 Assumption

$t2 = 0000 0000 0000 0000 0000 1101 0000 0000

$t1 = 0000 0000 0000 0000 0011 1100 0000 0000

 Operation

 or $t0, $t1, $t2 # reg $t0 = reg $t1 | reg $t2

 Result

$t0 = 0000 0000 0000 0000 0011 1101 0000 0000

38

From C to MIPS – Logical Operations
 Bitwise NOR

 Bit by bit operation

 Inverse of OR

 Example:

 Assumption

$t2 = 0000 0000 0000 0000 0000 1101 0000 0000

$t1 = 0000 0000 0000 0000 0011 1100 0000 0000

 Operation

 and $t0, $t1, $t2 # reg $t0 = ~ (reg $t1 | reg $t2)

 Result

$t0 = 1111 1111 1111 1111 1100 0010 1111 1111

39

From C to MIPS – Array Manipulation

 Exercise:

 What should change in the previous MIPS

code for EACH OF the following C-

statements?

A[300] = h + A[300];

A[16] = h + A [8];

A[i] = h + A [i];

 Write the equivalent machine code in each

case
40

From C to MIPS – Array Manipulation

 Arrays with Variable Index
 C code:

g = h + A [i];

 Equivalent MIPS code

41

From C to MIPS – Array Manipulation

 Arrays with Variable Index
 C code:

g = h + A [i];

 Equivalent MIPS code
• Assumption: $s4 contains I

add $t1, $s4, $s4

add $t1, $t1, $t1

add $t1, $t1, $s3

lw $t0, 0($t1)

add $s1, $s2, $t0 42

From C to MIPS – Array Manipulation
 Arrays with Variable Index

 C code:
g = h + A [i];

 Equivalent MIPS code
• Assumption: $s4 contains i

 # Multiply index by 4 due to byte addressing

 # Store the value in $t1

add $t1, $s4, $s4 # $t1 = 2 *i

add $t1, $t1, $t1 # $t1 = 4 *i

 # Base is stored in $s3

 # Get address of A[i]

add $t1, $t1, $s3 #$t1=Address(A[i])

 #Load A[i] into temporary register

lw $t0, 0($t1) # $t0 = A[i]

 # Add A[i] to h

add $s1, $s2, $t0 # $s1 = h + A[i]

 # $s1 corresponds to g
43

From C to MIPS - If-Statement

 C-Code:

if (i==j)

 h = i + j;

 Equivalent MIPS Code:

 bne $s0, $s1, Label

 add $s3, $s0, $s1

Label:



44

 Assumptions:
$s0 = i

$s1 = j

$s3 = h

From C to MIPS- If-else statement

 C statement

 if (i != j)

 f = g + h;

else

 f = g - h;

 Equivalent MIPS code:

 beq $s0, $s1, Else

 add $s2, $s3, $s4

 j Exit

Else: sub $s2, $s3, $s4

Exit: ... 45

 Assumptions:
$s0 = i $s1 = j
$s2 = f $s3 = g
$s4 = h

From C to MIPS – For Loops
 C-Code

 for (; i != h; i = i+j)

 g = g + a[i];

 Equivalent MIPS code:

46

 Assumptions:
$s1 = g $s2 = h

$s3 = i $s4 = j

$s5 = base address of array A

From C to MIPS – For Loops

 C-Code

 for (; i != h; i = i+j)

 g = g + a[i];

 Equivalent MIPS code:

Loop: add $t1,$s3,$s3 # $t1 = 2 * i

 add $t1,$t1,$t1 # $t1 = 4 * i

 add $t1,$t1,$s5 # $t1 = addr(A[i])

 lw $t0,0($t1) # $t0 = A[i]

 add $s1,$s1,$t0 #g = g +A[i]

 add $s3,$s3,$s4 #i = i + j

 bne $s3,$s2,Loop #go to Loop if ih

Note: Check if this is not a do-while loop!!!

47

 Assumptions:
$s1 = g $s2 = h

$s3 = i $s4 = j

$s5 = base address of array A

From C to MIPS – While Loop
 C-Code

 while (a[i] == k)

 i = i + j;

 MIPS Equivalent

48

 Assumptions:
$s3 = i
$s4 = j
$s5 = k
$s6 = Base address of A

From C to MIPS – While Loop
 C-Code

 while (a[i] == k)

 i = i + j;

 MIPS Equivalent

Loop:

 sll $t1, $s3, 2 # $t1 = 4 * i

 add $t1, $t1, $s6 # $t1=addr(A[i])

 lw $t0, 0($t1) # $t0 = A[i]

 bne $t0, $s5, Exit # goto Exit if A[i]k

 add $s3, $s3, $s4 # i=i+j

 j Loop # Loop back

Exit: ... # Next statement

 49

 Assumptions:
$s3 = i
$s4 = j
$s5 = k
$s6 = Base address of A

From C to MIPS - Less Than Test

C-Code:

 if (a < b) goto Less;

 Equivalent MIPS code :

 slt $t0, $s0, $s1 # $t0=1 if $s0 < $s1

 # ($s0=a, $s1=b)

 bne $t0,$zero,Less #goto Less if $t00

50

From C to MIPS - Switch Statement

 The jump register(jr) instruction is used

Unconditional jump to the address given in the

register

 Possibilities

 Convert it into a group of nested if-then-else

statements

 Use a table of addresses (jump address table) for

the instruction sequences and use an index to jump

to the appropriate entry

51

From C to MIPS - Switch Statement

 C-Code:
 switch(k)

 { case 0: f = I + j; break; /* k=0 */

 case 1: f = g + h; break; /* k=1 */

 case 2: f = g - h; break; /* k=2 */

 case 3: f = I - j; break; /* k=3 */

 }

 Steps:
1. Check that k in within limits, otherwise exit

2. From k, find out where to jump to (using index table)

3. After statement execution, jump to Exit label (break)

52

From C to MIPS - Switch Statement

 slt $t3, $s5, $zero # test if k<0 ($s5=k)

 bne $t3, $zero, Exit # go to Exit if k <0

 slt $t3, $s5, $t2 # Test if k<4, $t2=4

 beq $t3, $zero, Exit # go to Exit if k>=4

 add $t1, $s5, $s5 # $t1 = 2*k

 add $t1, $t1, $t1 # $t1=4*k=jump address

 add $t1, $t1, $t4 #$t1=addr(JumpTable[k])

 lw $t0, 0($t1) # $t0=JumpTable[K]

 jr $t0

L0: add $s0, $s3, $s4 # k=0 => f=i+j

 j Exit

L1: add $s0, $s1, $s2 # k=1 => f=g+h

 j Exit

L2: sub $s0, $s1, $s2 # k=2 => f g-h

 j Exit

L3: sub $s0, $s3, $s4 # k=3 => f=i-j

Exit: ... 53

 Assumptions:
$s0 = f, $s1 = g, $s2 = h, $s3 = I, $s4 = j, $s5= k, $t2= 4

Input/Output

We are not going to discuss MIPS I/O

instructions, except what is necessary to

display messages on the console window

 See examples

54

Procedure Calls

Execution of a procedure follows 6 steps

1. Place parameters in a place where the

procedure can access them

2. Transfer control to the procedure

3. Acquire storage resources to the procedure

4. Perform desired task

5. Place result in a place accessible by the

calling program

6. Return control to the point of origin

55

Procedure Calls

MIPS register convention for procedures

 $a0-$a3: 4 arguments registers to pass

parameneters

 $v0-$v1: 2 value registers to return values

 $ra: return address register to return to point

of origin

56

Procedure Calls

MIPS instructions used with procedures

 jal: Jump & Link

• Jump to an address & save address of the

following instruction in $ra register

 jr $ra: Jump to return address

• Jump to the address stored in $ra

57

Procedure Calls

What if more than 4 arguments need to be

transferred?

 Put it onto the stack

 Stack:

 Needs a pointer ($sp) to the most-recently

allocated address, to show where the next

procedure should be allocated

 $sp grows from higher to lower address

• Push: subtract from $sp

• Pop: Add to $sp

58

Example: Leaf Procedure

 Leaf procedure doesn’t call other procedures

 C Code

Int leaf_example (int g, int h, int I, int j)

{

 int f;

 f = (g + h) – (I + j)

 return f;

}

59

Example: Leaf Procedure(1)

 MIPS Equivalent(1)

Leaf_example:

 addi $sp, $sp, -12 # adjust stack to make room for 3 items

 sw $t1, 8($sp) #save $t1 on stack

 sw $t0, 4($sp) # save $t0 on stack

 sw $s0, 0($sp) # save $s0 on stack

 add $t0, $a0, $a1 # $t0 contains g + h

 add $t1, $a2, $a3 # $ t1 contains I + j

 sub $s0, $t0, $t1 # f = $t0 - $t1 = (g+h)-(I-j)

 add $v0, $s0, $zero # return result to calling point = f = ($v0 =
$s0+0)

60

Example: Leaf Procedure(2)

 MIPS Equivalent(2)

$s0, 0($sp) # restore $s0 for caller

 lw $t0, 4($sp) # restore $t0 for caller

 lw $t1, 8($sp) # restore $t1 for caller

 addi $sp, $sp, 12 # adjust stack to delete 3 items

 jr $ra # jump back to calling routine

61

Procedure Call Frame

 Memory block associated with the call, usually saved
onto stack

 Includes

 Argument values

 Registers possibly modified by the procedure

 Local variables

 Stack frame:

 Stack block used to hold a procedure call frame

 Frame pointer ($fp):

 Points to the first word in the frame

 Stack pointer ($sp):

 Points to last word of the frame

62

Procedure Calls

 Before the call:

1. Pass the first 4 arguments to

registers $a0-$a3. The system will

take care of them

2. Remaining arguments, if any, should

be pushed onto stack

3. Save caller-saved registers onto the

stack as well, since the called

function might use those registers

and overwrite their contents

4. Perform jal instruction

 Jump to callee's first instruction

 Save return address in $ra

63

Low address

High address

$fp

$sp

Stack
grow

direction

Procedure Calls

 Before execution of called

procedure:

1. Allocate memory for a

stack frame

2. Save callee-saved

registers in the frame

3. Update frame pointer

64

Local arrays &

 structures (if any)

Saved return address

Saved saved registers
(if any)

Saved argument
registers (if any)

$fp

$sp

Procedure Calls

 Before returning from the

procedure:

1. Place return value, if any, in

$v0 register

2. Restore callee-saved

registers by retrieving their

saved contents from the

stack

3. Pop stack frame to free the

memory used by the

procedure

4. Jump to the return address

stored in $ra
65

Low address

High address

$fp

$sp

Procedure Calls Review

66

After returning from
the procedure

Before executing
the procedure

$sp

Before the call

High address

Low address

Saved return
address

Saved argument
registers (if any)

Saved saves
registers (if any)

Local arrays and
structures (if any)

$fp

$sp

$fp

$sp

$fp

Nested Procedures

One procedure calls another, or calls itself

(recursion)

 Example: Factorial

 C Code

Int fact (int n)

{

 if (n < 1)

 return 1;

 else return (n * fact (n-1));

}
67

Nested Procedures
 Example: Factorial

 MIPS Code

fact:

 addi $sp, $sp, -8 # adjust stack for 2 items

 sw $ra, 4 ($sp) # save return address

 sw $a0, 0 ($sp) # save argument n

 slti $t0, $a0, 1 # # test for n < 1

 beq $t0, $zero, L1 # if n >= 1, goto L1

 addi $v0, $azero, 1 # return 1

 addi $sp, $sp, 8 # pop 2 items off stack

 jr $ra # return to after jal

L1: addi $a0, $a0, -1 # N >=1: argument gets (n-1)

 jal fact # call fact with (n-1)

 lw $a0, 0($sp) # return from jal: restore argument n

 lw $ra, 4 ($sp) # restore return address

 addi $sp, $sp, 8 # adjust stack pointer to pop 2 items

 mul $v0, $a0, $v0 # return n * fact (n-1)

 jr $ra # return to caller

68

Procedure Calls Example
 Example: Factorial

 Main calls Fact(10)

 Stack frame during call of fact(7)

69

m a i n

f a c t (1 0)

f a c t (9)

f a c t (8)

f a c t (7)

Stack

Stack
grow
direction

Old $ra
Old $fp

Old $ra
Old $fp
Old $a0

Old $ra
Old $fp
Old $a0

Old $ra
Old $fp
Old $a0

Old $ra
Old $fp
Old $a0

Allocating New Data on Stack
 Stack is used to store variables local to the

procedure that don’t fit in registers

 Some MIPS software use frame pointer $fp to point
to the first word of the frame of a procedure to allow
reference for local variables

 $fp offers a stable base register within a procedure
for local memory reference

70
Stack before call Stack during call Stack after call

Allocating Space on the Heap
 0000 0000hex:

 First part of the low end is

reserved by the system

 0040 0000hex :

 Followed by the text segment

 1000 0000hex:

 Static data are above the text

segment used for constants &

other static variables

 1000 8000hex:

 Heap hosts dynamic data

structures (e.g. linked lists)

 Stack starts in high-end of

memory & grows down

 Stack & heap grow in opposite

directions

 71

Review - Loading Programs for Execution

1. Determine size of text & data segments from executable file

header

2. Create enough address space for program‘s text & data

segments, in addition to a “stack segment”

3. Copy both instruction & data segments into address space

4. Copy arguments onto stack

5. Initialize Instruction register & stack pointer

6. Copy arguments from stack to registers

7. Call program’s main routine

8. When returning from main program, terminate with exit system

call

72

Review - MIPS instruction Formats

 Simple instructions all 32 bits wide

 Very structured

 Addresses are not 32 bits

Only three instruction formats

73

op 26 bit address

op rs rt rd shamt funct

op rs rt 16 bit address

R

I

J

Review - Branch instructions

bne $t4,$t5,Label # Next instruction is at Label if $t4  $t5

beq $t4,$t5,Label # Next instruction is at Label if $t4 = $t5

 Formats:

 We could specify a register (like lw and sw) and add it

to address

 Most branches are local (principle of locality)

 Use Instruction Address Register (PC = program counter)

 Jump instructions just use high order bits of PC

 address boundaries of 256 MB

74

op rs rt 16 bit address I

Review - Addressing
1. Register addressing:

 Operands are registers

2. Base (Displacement addressing):

 Operand location =

 register + constant (offset) in the instruction

3. Immediate addressing:

 Operand is a constant within the instruction

4. PC-relative addressing:

 Address = PC (program counter)

 + constant in the instruction

5. Pseudo addressing:

 Jump address = 26 bits of the instruction

 + upper bits of the PC

 A single operation can use more than one addressing mode (e.g.
add, addi)

75

Summary

 Instruction complexity is only one variable

 lower instruction count vs. higher CPI / lower clock

rate

Design Principles:

 Simplicity favors regularity

 Smaller is faster

 Good design demands compromise

 Make the common case fast

 Instruction set architecture

 A very important abstraction 76

 Thank you

77

