Code generation
for SPIM

Topics:

> Assembly language, assemblers
> MIPS R2000 Assembly language
o Instruction set
o« MIPS design goals
o« Memory & registers
o Instruction formats
o« Some MIPS Instructions
> Advanced topics
o Macros
o Procedure calls
o I/O

Introduction

> Instruction set:;

o [he complete set of instructions (vocabulary) used by a
machine

> Instruction Set Architecture (ISA):

o An abstract interface between the hardware and the lowest-
level software of a machine

o INcludes:

Necessary information to write correct machine-language
programs

Specification of instructions, registers, memory. size,
...elC.

> We will concentrate on MIPS- ISA
o Used by NEC, Nintendo, Silicon Graphics, Sony, . . .

High-Level Language (HLL) Translation

> Complilers generate either machine language or
assembly language object files

HLL pri)gram Object code

Program Compiler gug Assembler Linker Computer

Program
Assembly language program library Executable code

Assembly Language

> Symbolic representation of the machine language
of a specific processor

> Advantages
» High execution speed
o Smaller code size

> Disadvantages:
o Machine specific
o LONQ programs
o Less programmer productivity.
» Difficult to read, understand, & debug
o Lacks structure

>

Assemblers

Converts assembly language into machine code
Input:
o Assembly language program
Output:
o ODbject file containing

Non-executable machine instructions

Data

Bookkeeping info
Two phases:
o Get locations of labels and build the symbol table
o lranslate statements into equivalent binary code
Symbol Table

o Used to help resoelve forward & external referencing to

create the object file

§)

Translation of a C-Program Into Assembly

> Example: C-Program

#include <stdio.h>
Int main (int.argc, char *argv]])
{" Inti;
Int sum = 0;
for (1=0; i1<= 100; i1=1+1)
sum = sum +i*i;
printf(““The sum from 0... 100 is %d\n”, sum);

}

Equivalent Assembpbly Program (No
Labels)

addiu $29,$29, -32 #add immediate unsigned
sw $31,20($29) # $29 = $sp stack pointer

sw $4,32($29) # $31 = $rareturn address

sw $5,36($29) #

sw $0,24($29) # Store relevant values

sw $0,28($29) # onto stack

|w $14,28($29) #

|w $24,24($29) #

multu $14,$14 # multiply unsigned
addiu $8,$14,1

siti. $1,$8,101 # set $1 if < immediate

sw $8,28($29)

mflo $15 #move from lo of register
addu $25,$24,$15

bne $1,$0,-9

sw $25,24(%$29)

lui $4,4096 #load upper immediate
|w $5,24($29)

EL 1048812 #jump & link

addiu $4,$4,1072

|w $31,20($29)

addiu $29,$29,32

T $31 #jump register

move $2, $0

Equivalent Assembly Program (Labeled)

ext
.align 2
.globl main
main:
subu $sp,$sp, 32 #increment stack by a stack frame
SW $ra,20($sp) #Save return address
sd $a0,32($sp) # pseudo-instruction (Save double-word)
SW $0,24($sp)
SW $0,28(sp)
loop:
Iw $t6,28($sp)
mul $t7,5t6,5t6
Iw $t8,24(%$sp)
addu $t9,$%8,$t7
SW $t9,24($sp)
addu $t0,5t6,1
SW $t0,28(%$sp)
o] [$t0,100,l00p
la $a0,str # Pseudo-instruction (Load address)
Iw $al,24($sp)
IEL printf #Jump & link
move $v0,$0
Iw $ra,20($sp)
addu $sp,$sp,32
Jr $ra
.data
.align0 #Turn off;automatic alignment
str:

.asciiz “The sum from 0..100is %d\n”

Instruction Design

> Instruction length:

o Variable length instructions:

Assembler needs to keep track of all instruction sizes to
determine the position of the next instruction

o Fixed length instructions:

Require less housekeeping

> Number of operands

o Depend on type of instruction

10

SPIM

> Software simulator for running MIPS R-Series
Processors’ programs

> Why use a simulator?
o MIPS workstations
Not always available
Difficult to understand & program
o Simulator
Better programming environment
Provide more features
Easily modified

11

MIPS Processors

> Addressing modes:

Describe the manner in which addresses for memory
Aaccesses are constructed

MIPS is a “Load-Store” architecture

Only load/store instructions access memaory
Data should be aligned (usually multiple of 4 bytes)
More details in MIPS Quick Reference

https://imagination-technologies-cloudfront-
assets.s3.amazonaws.com/documentation/MDO0565-
2B-MIPS32-ORC-01.01..pdf

12

http://csjava.occ.cccd.edu/~pharao/CS116-MIPS-Reference.html
http://csjava.occ.cccd.edu/~pharao/CS116-MIPS-Reference.html

>

>

>

>

>

Addressing Modes

Register addressing

o Operand Is a register

o Value Is the contents of the register

Base or displacement addressing

o Operand is at the memory location whose address Is

the sum of a register and a constant in the instruction

Immediate addressing

o Operand is a constant within the instruction itself
o Immediate

PC-relative addressing

o Address Is the sum of the PC and a constant in the
Instruction

Pseudo-direct addressing

o Jump address Is the 26 bits of the instruction
concatenated with the upper bits of the PC

13

Addressing Modes

2. Reglstar addressing

o] fr].. Junc
—— — e

3. Base addressing

14

Memory Organization

0 8 bits of data

> Memory Is viewed as a large, 1 | 8 bits of data

single-dimensional array

2 | 8 bits of data
> [0 access a word, memory.

address Is supplied by 3 | 8bits of data

Instruction
4 8 bits of data

> Memory address Is an index to
the array, starting at O 8 bits of data

6 | 8 bits of data

15

Byte & Word Addressing

> Index points to a byte of memory

> Most data items use "words"

> Words are aligned at word boundaries
o« For MIPS, a word Is 32 or 64 bits

o Ihey are usually called MIPS =32 &
MIPS =64 respectively

o We will only consider MIPS32
o MIPS32 (4 bytes) can access

2°2 hytes with byte addresses
from O to 2%2-1, or

220 words with byte addresses 0,
4,8, ... 2°%-4

12

Registers hold
32 bits of data

32 bits of data
32 bits of data
32 bits of data

32 bits of data

16

MIPS Instruction Formats

> MIPS has 3 instruction formats
o R-type (Register) format
o J-type (Jump) format
o |-type (Immediate) format

> All MIPS Instruction formats are 32 bits long
o Example: add $t0, $s1, $s2

> Registers can be written in their symbolic or

numeric forms
$t10=8, $s1=17, $s2=18

17

YV V V V V VY

R-Format (Register) Instructions

op: Operation code (6-bits)

rs; 15t source register (5-bits)
rt: 279 source register (5-bits)
rd: Destination register (5-bits)
shamt: Shift amount (5-bits)

funct: Function code (6-bits)

o The first (op) & last fields (funct), combined, indicate the type of
Instruction

o Second (rs) & third (rt) fields are the source operands
o Fourth field (rd) is the destination operand

[o T ol e T s T of o |

op I rsfrt | rd bhamtffunct "

Registers Names & Numbers

Register#

Preserved
on call?

the constant value 0

2-3

values for results & expr. evaluation

4-1

yes

saved

stack pointer

19

SPIM

> Software simulator for running MIPS R-Series processors’
programs

> SPIM Simulator simulates most of the functions of three MIPS
Processors

> More about SPIM will be discussed in the labs
> Why use a simulator?
o MIPS workstations
Not always available
Difficult to understand & program
o Simulator
Better programming environment
Provide more features

Easily modified -

>

>

MIPS Design
Goals

Maximize performance

Minimize cost

Reduce design time

How can we reach these goals?

Principles
Simplicity favors regularity
Smaller Is faster
Good design demands good compromises
Make common case fast

21

Simplicity Favors Regularity

> Three operands keeps the instruction logically
simple

> Examples:
C Code Assembly Equivalent
e A=b+cC add a, b, c
e b=x*y mul b, X, y

e a=Db +42 addi a, b, 42

22

Simplicity Favors Regularity

> A more complex example

C Code Assembly equivalent
fi=(g+h) = (i+]) add $t0, g, h
add $tl, 1, |
sub f, $t0, $t1
> Notes
o Consider the operator precedence
() before -

o Thisis a pseudo code
Cannot use the symbols g and h

Values should exist In seme registers, then use register

names or numbers -

Simplicity Favors Regularity

> More Examples:
Using variable names

o C code:
A=B+C+D+E

o« MIPS pseudocode:

add A, B, C #add B + C,put resultinto A

add A, A, D #putB +C+ Dinto A

add A, A, E #putB +C+ D+ Einto A
> Syntax:

add rd, rs, rt. # destination, suorcel, source2

> Exercise

» Assume that A, B, C, D, & E are stored in registers $s0, ...

$s4, rewrite the code using registers’ names
24

Simplicity Favors Regularity

> More Examples:

o Using symbolic register names

C code:
A =B+ C+D;
E=F-A;

MIPS code:
add $t0, $s1, $s2
add $s0, $t0, $s3
sub $s4, $s5, $s0

25

Why are register faster?

o WWhere are the registers?

Control | |

Memory

Datapath | |

Processor

A

Memory ACCESS

> Data transfer instructions are used to transfer data between registers and
memory

> They must supply a memory address
> Example
o« C Code
g=h + A[8]
o Assumptions

Register $s3 contains the base address of array A
8 is the offset of the 8™ element of the array
o MIPS equivalent
lw $t0, 8($s3) # Temporary. register $t0 gets A[8]
add $s1, $s2, $t0 #g=h+ A[8]

27,

Instruction Format

> Compromise between providing for larger
addresses & constants In instruction and keeping all
Instructions the same length

> Addresses needs more than 5-bits

o Introduce a new type of instruction format for data
transfer instructions (I-format)
o \We have two options:
Change instruction length for different types of instructions, or
Keep Instruction length & change field format
Example: Iw $t0, 32($s2)

35 18 8 32

op rs rt 16 bit address
28

Memory ACCESS

> lw instruction can load words within (+/-) 21°
Immediately

> The meaning of the field ($rt) changes:
o for lw: destination register
o fOr sw: source register

> Each format Is assigned a set of values of the op-
field from which It recognizes how to treat the
Instruction (R- or |-format type) and how many.
operands are involved

29

Control Flow Instructions

> The ability to make decisions

> Change the control flow (i.e., "next" instruction to be
executed)

> [ypes:
o Conditional
o Unconditional

> See Appendix for more comparison & branch
Instructions

> In high-level languages, you don't have to write explicit
labels

> Compilers create branches & labels that don't appear.
In the HLEL 20

> Forms:
o]
o JI

Unconditional Branches

label # jump to label
IS #ump to addr stored in register

31

Conditional Branches

> Forms:
o Deq (Branch on eqgual)
o bne (Branch on not equal)
o Slt (Set on less than)

> Examples:

bne $t0,$t1,L #go to L if $t02ht1

beq $t0,5t1, L #go to L if: $t0=$tl
st $10,$t1,$t2 # $t0=1 If, $t1<$t2, $10=0 otherwise

More Control Flow Instructions

> Branch-if-less-than

slt $t0,$s1,$s2 = If $s1 < $s2 then
$t0=1

else
S (O=0)

> We can use this instruction to build

blt $s1, $s2, Label
o Dbltis a pseudo-instruction meaning “branch if less than”

> We can now build general control structures
> Note that the assembler needs a register to do this

33

From C to MIPS — Array Manipulation

> Arrays with Constant Index
o C code: A[8] =h + Al8];
o Equivalent MIPS code:

Assumptions:
» $s3 contains starting address of the array A
» $s2 contains the value of h

|w $t0,32($s3) # $t0 gets A[8]

offset =8 x 4 =32
add $t0,$s2,$t0 #Add h

SW $t0,32($s3) # store value back in A[8]

34

From C to MIPS — Logical Operations

> Shifts

> Bitwise AND
> Bitwise OR
> Bitwise NOR

35

From C to MIPS — Logical Operations

> Shifts
o Left/right (sll, srl)

o Can be used to represent
multiplication/division for multiples of 2

> Example
SII$t2, $s0, 4 # reg $t2 = reg $s0 << 4 bits

36

From C to MIPS — Logical Operations

> Bitwise AND
o Bit by bit operation
o Leaves a 1 in the result only If both bits of the
operands are 1

> Example:

o Assumption
$t2 = 0000 0000 0000 0000 0000 1101 0000 0000
$t1 = 0000 0000 0000 0000 0011 1100 0000 0000

o Operation
and $t0, $tl, $t2 # reg $t0 = reg $tl & reg $t2
o Result
$t0 = 0000 00000000 00000000 1100:0000 0000

37

From C to MIPS — Logical Operations
> Bitwise OR
o Bit by bit operation
o Leaves a 1 in the result only If any bit of the operands
IS 1
> Example:

o Assumption
$t2 = 0000 0000 0000 0000 0000 1101 0000 0000
$t1 = 0000 0000 0000 0000 0011 1100 0000 0000

o Operation
or $t0, $t1, $t2 # reg $t0 = reg Stl | reg $t2
o Result

$t0 = 0000:0000:0000:0000:0011 1101 0000:0000
38

From C to MIPS — Logical Operations
> Bitwise NOR
o Bit by bit operation
o Inverse of OR
> Example:
o Assumption
$t2 = 0000 0000 0000 0000 0000 1101 0000 0000
$t1 = 0000 0000 0000 0000 0011 1100 0000 0000
o Operation
and $t0, $t1, $t2 # reg $t0 = ~ (reg $t1 | reg $t2)
o Result
$t0= 1111 1111 1111 1111 1100 0010 1111 1111

39

From C to MIPS — Array Manipulation
> EXxercise:

o What

should change In the previous MIPS

code for EACH OF the following C-
Statements?

A
A
A

o Write
case

300] = h + A[300];
16] =h + A [8];

1] =h+A[];
the eguivalent machine code in each

40

From C to MIPS — Array Manipulation

> Arrays with Variable Index

o C code:
g=h+Al[l;
o Equivalent MIPS code

41

From C to MIPS — Array Manipulation

> Arrays with Variable Index
o C code:
g=h+Al[l;
o Equivalent MIPS code
Assumption: $s4 contains |

add $tl, $s4, $s4
add $t1, $t1, $tl
add $t1, $tl, $s3
lw $t0, O($tl)

add $s1, $s2, $t0

From C to MIPS — Array Manipulation

> Arrays with Variable Index

o C code:
g=h+Ali;
o Equivalent MIPS code
Assumption: $s4 contains i

Multiply index by 4 due to byte addressing
Store the value in $t1

add $t1, $s4, $s4 # $tl = 2 *i
add $t1, $t1, St1 #Stl =4 *i
Base is stored in $s3
Get address of Ali]
add $t1, $t1, $s3 #$t1=Address(Ali])
#l.oad Ali] into temporary register
lw $t0, 0($t1) # $t0 = Ali]
Add Ali] to h
add $s1, $s2, $t0 #%$s1 = h + Ali]

$s1 corresponds to g

From C to MIPS - |f-Statement

= Assumptions:
> C-Code:

$s0 = i
It (iI==j) $s1 =]
h=i+j; $s3=h

> Equivalent MIPS Code:

bne $s0, $s1, Label

add $s3, $s0, $s1
L abel:

44

From C to MIPS- If-else statement

= Assumptions:
> C statement $50 | $s1 =]
if (i 1=) $s£21 = $s3 =
f=g+h $s4 =
else

f=g-h;
> Equivalent MIPS code:
beq $s0, $si, Else
add $s2, $53, $54
j EXit
Else: sub $52, $53, $54
EXIt:

45

From C to MIPS — For Loops

= Assumptions:
~ C-Code $s1 =g $s2=h
: D $s3 =i $s4 = |
for Gil=h;1=1+]) $s5 = base address of array A
g=g+alil;

> Equivalent MIPS code:

46

From C to MIPS — For Loops

. C-Code = Assumptions:
: L $s1=g $s2=h
for (1'1=h; 1= 1+]) $s3 = j $s4 = j
g=g+alil: $s5 = base address of array A
> Equivalent MIPS code:
L.oop: add $t1,$s3,$53 #PtL=2*|
add $tl,5t1,t1 #Stl=4%*i
add $tl,$t1,$s5 # $tl = addr(A[i])
lw $t0,0(5t1) # $t0 = Alil]
add $s1,$s1,5t0 #g = g +A[i]
add $53,$53,554 Hi= i+ |
bne $53,$s2,L.00p #go to L.oop ifizh

Note: Check Ifithis is not a do-while loop!!! 47

From C to MIPS — While Loop

= Assumptions:

> C-Code $s3 = |

while (a[i] == k $s4 =)

_ _(U) $s5 =k
=1+]; $s6 = Base address of A

> MIPS Equivalent

48

From C to MIPS — While Loop

> C-Code
while (afi] == k) = Assumptions:
=1+ ; $s3 =1
> MIPS Equivalent gzé zjk
Loop: $s6 = Base address of A
sl $tl, $s3, 2 #Stl=4%*i

add $tl, $t1, $s6 # Stl=addr(A[i])

lw $t0, 0($t1) # $t0 = Alil]

bne $t0, $s5, Exit # goto Exit if Afi]=k
add $s3, $s3, $s4 #i=i+]

J L.oop # L.0op back

EXit: # Next statement

From C to MIPS - Less Than Test

> C-Code:
If (& < b) goto Less;

> Equivalent MIPS code :
slt $t0, $s0, $s1 # $t0=1 if $s0 < $s1
($s0=a, $s1=D)
bne $t0,$zero,L.ess #goto Less if $t020

50

From C to MIPS - Switch Statement

> The jump register(jr) instruction Is used

> Unconditional jump to the address given in the
register

> Possibilities

o Convert It Into a group of nested If-then-else
statements

o Use a table of addresses (jJump address table) for
the Instruction seguences and use an Index to jump
to the appropriate entry

51

From C to MIPS - Switch Statement

> C-Code:

switch(k)

{ case 0: =1+ J; break; [* k=0 */
case 1: f=g + h; break; [* k=1*/
case 2: f=g - h; break; [* k=2 */
case 3: f=1-J; break; [* k=3 */

}

> Steps:

1. Check that k in within limits, otherwise exit
2. From k, find out where to jump to (using index table)
3. After statement execution, jump to Exit label (break)

52

st
bne
st
beq
add
add
add
lw
Jr
.0: add
J
.1: add
J
.22 sub
J
1232 sub
EXIt: ...

From C to MIPS - Switch Statement

Assumptions:

$s0=", $s1 =g, $s2 = h, $s3 = I, $s4 = j, $s5=k, $t2=4

$t3, $s5, $zero
$t3, $zero, Exit
$t3, $s5, $t2
$t3, $zero, Exit
$t1, $s5, $s5
$tl, $t1, $tl
$tl, $t1, $t4
$t0, 0($t1)

$t0

$s0, $s3, $s4
Exit

$s0, $s1, $s2
Exit

$s0, $s1, $s2
Exit

$s0, $s3, $s4

test if k<O ($s5=k)

go to Exit if k <0

Test if k<4, $t2=4

go to Exit if k>=4

$tl = 2*k

St1=4*k=jump address
#$tl=addr(JumpTable[K])
$t0=JumpTable[K]

k=0 => f=itj
k=1 =>f=g+h
#k=2=>fg-h

k=3 => f=i|
53

Input/Output

> We are not going to discuss MIPS I/O
Instructions, except what Is necessary to
display messages on the console window

> See examples

54

Procedure Calls

> Execution of a procedure follows 6 steps

1.

on b W N

Place parameters in a place where the
procedure can access them

. Transfer control to the procedure

. Acguire storage resources to the procedure
. Perform desired task

. Place result in a place accessible by the

calling program

. Return control to the point of origin

55

Procedure Calls

> MIPS register convention for procedures

o $a0-%$a3: 4 arguments registers to pass
parameneters

o $V0-$Vv1: 2 value registers to return values

o Pra: return address register to return to point
of origin

56

Procedure Calls

> MIPS Instructions used with procedures
o Jal: Jump & Link

Jump to an address & save address of the
following Instruction in $ra register

o |r $ra: Jump to return address
Jump to the address stored in $ra

57

Procedure Calls

> What If more than 4 arguments need to be
transferred?

o PuUut It onto the stack

> Stack:

o Needs a pointer ($sp) to the most-recently
allocated address, to show where the next
procedure should be allocated

o $sp grows from higher to lower address

Push: subtract from $sp
Pop: Add to $sp

58

Example: Leaf Procedure

> Leaf procedure doesn't call other procedures
> C Code

Int leaf_example (int g, int h, Int [, int)

{
int f;
f=(+h)—(I+])
return f; - | $5p-=
%‘E"‘f""ﬂﬂ"“
} cmmotregwsto

R RA S LB AN A 4 P A T

~ | Contents of regiser sso

59

Example: Leal Procedure(1

> MIPS Equivalent(1)
Leaf_example:

addi
S
SW
SW
add
add
sub

add
$s0+0)

$sp, $sp, -12
$t1, 8($sp)

$t0, 4($sp)
$s0, 0($sp)
$t0, $a0, $al
$t1, $a2, $a3
$s0, $t0, $t1
$vO0, $s0, $zero

Hgh address

Sﬂp .
Cmmo(mlmitl

AT SS AL AN T VY

Contants of register sto

B e e LA TP S

§3p- Contents o register sso

adjust stack to make room for 3 items
#save $tl on stack

save $t0 on stack

save $s0 on stack

$t0 contains g + h

$ tl contains | + |

f = $t0 - $t1 = (g+h)-(I-))

return result to calling point = f = ($v0 =

60

Example: Leal Procedure(2

> MIPS Equivalent(2)

Hgh address

Sﬂp .
Conmotmlmstl

AP e AN TV VY .-4

Contents of register $t0

AR Soet A e S oarvrend

Contents o register sso

$s0, 0($sp) # restore $sO for caller

\W
lw

addi
Ir

$t0, 4($sp)
$t1, 8($sp)
$sp, $sp, 12
$ra

restore $t0 for caller

restore $tl for caller

adjust stack to delete 3 items
jump back to calling routine

61

>

>

>

>

>

Procedure Call Frame

Memory block associated with the call, usually saved
onto stack

Includes

o Argument values

o Registers possibly modified by the procedure

o Local variables

Stack frame:

o Stack block used to hold a procedure call frame
Frame pointer ($fp):

o Points to the first word in the frame

Stack pointer ($sp):

o Points to last word of the frame

62

Procedure Calls

High address

> Before the call: $fp

1. Pass the first 4 arguments to
registers $a0-%$a3. The system will $sp
take care of them

2. Remaining arguments, if any, should
be pushed onto stack Stack

3. Save caller-saved registers onto the grow
stack as well, since the called e

function might use those registers
and overwrite their contents

4. Perform jal instruction
Jump to callee's first instruction

Save return address in $ra
Low address

63

Procedure Calls

> Before execution of called
procedure:

1. Allocate memory for a
stack frame

2. Save callee-saved
registers in the frame

3. Update frame pointer

$fp

Saved argument
registers (if any)

Saved return address

Saved saved registers
(if any)

Local arrays &

structures (if any)
$sp

64

Procedure Calls

High address

> Before returning from the

procedure: 3P
1. Place return value, If any, In
$vO0 register #Sp

Restore callee-saved
registers by retrieving their
saved contents from the
stack

Pop stack frame to free the
memory used by the
procedure

Jump to the return address

stored n Sra Low address

65

Procedure Calls Review

High address
$fp -) -
$Sp $sp
$fp If:;i‘:‘t’::;g(‘i‘f“;i';‘) \

Saved return
address

Saved saves
registers (if any)
Local arrays and

structures (if any)

$sp
Low address

Before the call Before executing After returning from
the procedure the procedure 66

Nested Procedures

> One procedure calls another, or calls itself
(recursion)

> Example: Factorial

o C Code
Int fact (int n)
{
f(n<1)
return 1;
else return (n * fact (n-1));

J

67

fact;

L1:

Nested Procedures

> Example: Factorial
o« MIPS Code

addi
SW
SW
slti
beq
addi
addi
Jr
addi
IEL
Iw
Iw
addi
mul
Jr

$sp, $sp, -8
$ra, 4 ($sp)
$a0, 0 ($sp)
$t0, $a0, 1
$t0, $zero, L1
$v0, $azero, 1
$sp, $sp, 8
$ra

$a0, $a0, -1
fact

$a0, 0($sp)
$ra, 4 ($sp)
$sp, $sp, 8
$v0, $a0, $v0
$ra

adjust stack for 2 items

save return address

Save argument n

##testforn<1

#i1fn>=1, goto L1

return 1

pop 2 items off stack

return to after jal

N >=1: argument gets (n-1)

call fact with (n-1)

return from jal: restore argument n
restore return address

adjust stack pointer-to pop 2 items
return n * fact (n-1)

return to.caller

68

Procedure Calls Example

> Example: Factorial
o Main calls Fact(10)

o Stack frame during call of fact(7)

Stack

Old $ra
Old $fp
Old $a0

Old $ra
Old $fp
Old $a0

Old $ra
Old $fp

Old $a0

Old $ra
Old $fp
Old $a0

Old $ra
Old $fp

main
fact(10)

Stack
fact (9 grow
act(3) direction
fact (8)
fact (7)

69

Allocating New Data on Stack

> Stack IS used to store variables local to the
procedure that don't fit in registers

> Some MIPS software use frame pointer $fp to point
to the first word of the frame of a procedure to allow.
reference for local variables

> $fp offers a stable base register within a procedure
for local memory reference

Stack before call Stack during call Stack after call

70

Allocating Space on the Heap

0000 0000},

o First part of the low end Is
reserved by the system $sp-=TFff Fifoy,,

0040 0000, :
o Followed by the text segment
1000 0000,,:

o Static data are above the text
segment used for constants &

other static variables $gp -+ 1000 BDOD,,
1000 8000;,,: 1000 0000l
o Heap hosts dynamic data
structures (e.g. linked lists) pe-=0040 000Dy,
o Stack starts in high-end of 0

memory & grows down

o Stack & heap grow. In opposite
directions

/1

S S e

Review - Loading Programs for Execution

Determine size of text & data segments from executable file
header

Create enough address space for program's text & data
segments, in addition to a “stack segment™

Copy both Instruction & data segments into address space
Copy arguments onto stack

Initialize Instruction register & stack pointer

Copy arguments from stack to reqgisters

Call program’s main routine

\When returning from main program, terminate with exit system
call

/2

Review - MIPS instruction Formats

> Simple instructions all 32 bits wide
> Very structured

> Addresses are not 32 bits

> Only three instruction formats

J E3 S I A S

: m 26 bit address

/3

Review - Branch instructions

bne $t4,$t5,Label # Next instruction is at Label if $t4 =$t5
beq $t4,%t5,Label # Next instruction is at Label if $t4 = $t5

> Formats:

> We could specify a register (like lw and sw) and add it
to address

o Most branches are local (principle of locality)
o Use Instruction Address Register (PC = program counter)

> Jump instructions just use high erder:nbits of: PC
o address boundaries of 256 MB 74

Review - Addressing

. Register addressing:
o Operands are registers
. Base (Displacement addressing):
o Operand location =
register + constant (offset) in the instruction

. Immediate addressing:
o Operand Is a constant within the instruction
. PC-relative addressing:
o Address = PC (program counter)

+ constant in the instruction
. Pseudo addressing:
o Jump address = 26 bits of the instruction

+ upper bits of the PC

A single operation can Use more than ene addressing mode (e.g.
add, addi)

75

Summary

> Instruction complexity Is only one variable

o lOower Instruction count vs. higher CPI / lower clock
rate

> Design Principles:
o SImplicity favors regularity
o Smaller Is faster
o Good design demands compromise
o Make the common case fast

> Instruction set architecture
o A Very Important abstraction o

Thank you

/7

