
 

 

 

 

 

Semantic Analysis 
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Semantic Analysis 

 Lexical analysis 
 Detects inputs with illegal tokens 

• e.g.: main$ (); 

 Syntactic analysis 
 Detects inputs with ill-formed parse trees 

• e.g.: missing semicolons 

 

 Semantic analysis 
 Last “front end” analysis phase 

 Catches all remaining errors 
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Semantic Analysis 
 Source 

code 
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Beyond Syntax 
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foo(int a, char * s){ … } 

 

int bar() { 

  int f[3]; 

  int i, j, k; 

  char *p; 

  float k; 

  foo(f[6], 10, j);  

  break; 

  i->val = 5; 

  j = i + k; 

  printf(“%s,%s.\n”,p,q); 

  goto label23; 

} 

What’s wrong 
with this code? 

 

(Note: it parses 
perfectly) 



Beyond Syntax 

4 

foo(int a, char * s){ … } 

 

int bar() { 

  int f[3]; 

  int i, j, k; 

  char *p; 

  float k; 

  foo(f[6], 10, j);  

  break; 

  i->val = 5; 

  j = i + k; 

  printf(“%s,%s.\n”,p,q); 

  goto label23; 

} 

What’s wrong 
with this code? 

 

(Note: it parses 
perfectly) 

f[6] will 
cause a run-
time failure 



Goals of a Semantic Analyzer 

 Compiler must do more than recognize whether a sentence belongs 

to the language… 

 

 • Find remaining errors that would make program invalid 

• undefined variables, types 

• type errors that can be caught statically 

 • Figure out useful information for later phases 

• types of all expressions 

• data layout 

 

 Terminology 

 Static checks – done by the compiler 

 Dynamic checks – done at run time 
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Kinds of Checks 
Uniqueness checks 

 Certain names must be unique 

 Many languages require variable declarations 

Flow-of-control checks 
 Match control-flow operators with structures 

 Example: break applies to innermost loop/switch 

Type checks 
 Check compatibility of operators and operands 

Logical checks 

 Program is syntactically and semantically correct, 

but does not do the “correct” thing 
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Examples of Reported Errors 

• Undeclared identifier 

• Multiply declared identifier 

• Index out of bounds 

• Wrong number or types of args to call 

• Incompatible types for operation 

• Break statement outside switch/loop 

• Goto with no label 
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Program Checking 

Why do we care? 
 

Obvious: 
 Report mistakes to programmer 

 Avoid bugs:   f[6] will cause a run-time failure 

 Help programmer verify intent 
 

How do these checks help compilers? 
 Allocate right amount of space for variables 

 Select right machine operations 

 Proper implementation of control structures 
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Can We Catch Everything? 
• Try compiling this code: 

 void main() 

 { 

  int i=21, j=42; 

  printf(“Hello World\n”); 

  printf(“Hello World, N=%d\n”); 

  printf(“Hello World\n”, i, j); 

  printf(“Hello World, N=%d\n”); 

  printf(“Hello World, N=%d\n”); 

 } 
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Inlined TypeChecker and 

CodeGen 
 You could type check and generate code 

as part of semantic actions: 

 
 expr : expr PLUS expr {  

              if ($1.type == $3.type && 

                 ($1.type == IntType || 

                   $1.type == RealType)) $$.type = $1.type 

              else error(“+ applied on wrong type!”); 

              GenerateAdd($1, $3, $$); 

            } 
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Problems 

 

• Difficult to read 

• Difficult to maintain 

• Compiler must analyze program in order 

parsed 

 

• Instead … we split up tasks 
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Compiler ‘main program’ 

 

 void Compile() { 

   AST tree = Parser(program); 

   if (TypeCheck(tree)) 

     IR ir =  

       GenIntermedCode(tree); 

     EmitCode(ir); 

   } 

 } 
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Typical Semantic Errors 

• Multiple declarations: a variable should be 

declared (in the same scope) at most once  

• Undeclared variable: a variable should not be 

used before being declared 

• Type mismatch: type of the LHS of an 

assignment should match the type of the RHS 

• Wrong arguments: methods should be called 

with the right number and types of arguments 
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A Sample Semantic Analyzer 

 Works in two phases – traverses the AST created by the parser 
 

1. For each scope in the program 

 process the declarations 

• add new entries to the symbol table and  

• report any variables that are multiply declared 

 process the statements   

• find uses of undeclared variables, and  

• update the "ID" nodes of the AST to point to the appropriate 
symbol-table entry.  

2. Process all of the statements in the program again 

 use the symbol-table information to determine the type of each 
expression, and to find type errors.  
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Scoping 

 In most languages, the same name can be declared multiple times  

 if its declarations occur in different scopes, and/or  

 involve different kinds of names 

 Java: can use the same name for  

 a class 

 field of the class 

 a method of the class  

 a local variable of the method  

 

 class Test {  

  int Test;  

  void Test( ) { double Test; }  

   }  
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Scoping: Overloading 

 Java and C++ (but not in Pascal or C): 
 can use the same name for more than one method  

 as long as the number and/or types of parameters are 

unique 

 

int add(int a, int b); 

float add(float a, float b); 
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Scoping: General Rules 

 The scope rules of a language: 

 Determine which declaration of a named object corresponds to 

each use of the object 

 Scoping rules map uses of objects to their declarations 

 

 C++ and Java use static scoping: 

 Mapping from uses to declarations at compile time 

 C++ uses the "most closely nested" rule 

• a use of variable x matches the declaration in the most 

closely enclosing scope  

• such that the declaration precedes the use 
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Scope levels 
 Each function has two or more scopes:  

 One for the function body 

• Sometimes parameters are separate scope! 

• (Not true in C) 

  void f( int k ) { // k is a parameter  

    int k = 0;      // also a local variable  

    while (k) {    

        int k = 1;  // another local var, in a 

loop  

    }  

  } 

 Additional scopes in the function 

• each for loop and  

• each nested block (delimited by curly braces) 
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Checkpoint #1 
 Match each use to its declaration, or say why it is 

a use of an undeclared variable. 

 
 int k=10, x=20;  

 void foo(int k) {  

  int a = x; int x = k; int b = x;  

  while (...) {  

  int x;  

  if (x == k) {  

  int k, y;  

  k = y = x;  

  }  

  if (x == k) { int x = y; }  

  }  

 }  19 



Dynamic Scoping 

Not all languages use static scoping 

 Lisp, APL, and Snobol use dynamic 

scoping 

 

Dynamic scoping: 
 A use of a variable that has no corresponding 

declaration in the same function corresponds to the 

declaration in the most-recently-called still active 

function 
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Example 

 For example, consider the following code:  
 

 int i = 1; 

 void func() { 

    cout << i << endl; 

 } 

 int main () { 

    int i = 2; 

    func(); 

    return 0; 

 } 
21 

If C++ used 
dynamic scoping, 

this would print out 
2, not 1 



Checkpoint #2 

 Assuming that dynamic scoping is used, what is 

output by the following program?  

 

 void main() { int x = 0; f1(); g(); f2(); }  

 

 void f1() { int x = 10; g(); }  

 

 void f2() { int x = 20; f1(); g(); }  

 

 void g() { print(x); }  

 
22 



Keeping Track 
Need a way to keep track of all identifier 

types in scope  
 

 { 

    int i, n = …; 

    for (i=0; i < n; i++) 

       boolean b= … 

 

 } 
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i  int 
n  int 

i  int 
n  int 
b  boolean 
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Symbol Tables 

 Purpose:  

 keep track of names declared in the program 

 Symbol table entry:  

 associates a name with a set of attributes, e.g.: 

• kind of name (variable, class, field, method, …) 

• type  (int, float, …) 

• nesting level  

• mem location (where will it be found at runtime) 

 Functions: 

•  Type Lookup(String id)  

•  Void Add(String id, Type binding) 

 Bindings: name type pairs {a   string, b  int} 

24 



Environments 

 Represents a set of mappings in the symbol table 

 

 function f(a:int, b:int, c:int) =  

 (  print_int(a+c); 

     let var j := a+b 

  var a := “hello” 

       in print(a); print_int(j) 

     end; 

     print_int(b) 

 ) 
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0 

 

1 = 0 + a  int 
 

2 = 1 + j  int 

Lookup  
in 1 

0 

1 



How Symbol Tables Work (1) 
int x; 

char y; 

 

void p(void) 

{ double x; 

    … 

  { int y[10]; 

   … 

  } 

   … 

} 

 

void q(void) 

{ int y; 

   … 

} 

 

main() 

{ char x; 

  … 

} 
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How Symbol Tables Work (2) 
int x; 

char y; 

 

void p(void) 

{ double x; 

    … 

  { int y[10]; 

   … 

  } 

   … 

} 

 

void q(void) 

{ int y; 

   … 

} 

 

main() 

{ char x; 

  … 

} 
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How Symbol Tables Work (3) 
int x; 

char y; 

 

void p(void) 

{ double x; 

    … 

  { int y[10]; 

   … 

  } 

   … 

} 

 

void q(void) 

{ int y; 

   … 

} 

 

main() 

{ char x; 

  … 

} 
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How Symbol Tables Work (4) 
int x; 

char y; 

 

void p(void) 

{ double x; 

    … 

  { int y[10]; 

   … 

  } 

   … 

} 

 

void q(void) 

{ int y; 

   … 

} 

 

main() 

{ char x; 

  … 

} 
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How Symbol Tables Work (5) 
int x; 

char y; 

 

void p(void) 

{ double x; 

    … 

  { int y[10]; 

   … 

  } 

   … 

} 

 

void q(void) 

{ int y; 

   … 

} 

 

main() 

{ char x; 

  … 

} 
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How Symbol Tables Work (6) 
int x; 

char y; 

 

void p(void) 

{ double x; 

    … 

  { int y[10]; 

   … 

  } 

   … 

} 

 

void q(void) 

{ int y; 

   … 

} 

 

main() 

{ char x; 

  … 

} 
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A Symbol Table Implementation 
 Two structures: Hash table, Scope Stack 

 

  Symbol = foo 

  Hash(foo) = i 
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i x foo bar 

Symbol table 



Enter/Exit Scope 

We also need a stack to keep track of the 

“nesting level” as we traverse the tree… 
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Variables vs. Types 

Often, compilers maintain separate symbol 

tables for Types vs. Variables/Functions 

 

 Lecture Checkpoint: 

   Scopes 

   Types 
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Types 

 What is a type? 

 The notion varies from language to language 

 

 Consensus 

 A set of values 

 A set of operations allowed on those values 

 

 Certain operations are legal for each type 

 It doesn’t make sense to add a function pointer and 
an integer in C 

 It does make sense to add two integers 

 But both have the same assembly language 
implementation! 
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Type Systems 

 A language’s type system specifies which 

operations are valid for which types 

 

 The goal of type checking is to ensure that 

operations are used with the correct types 

 Enforces intended interpretation of values 

 

 Type systems provide a concise formalization of 

the semantic checking rules 
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Why Do We Need Type 

Systems? 
Consider the assembly language fragment 

 

  addi  $r1, $r2, $r3 

 

 

What are the types of $r1, $r2, $r3? 
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Type Checking Overview 

 Four kinds of languages: 

 Statically typed: All or almost all checking of types is 

done as part of compilation 

 Dynamically typed: Almost all checking of types is 

done as part of program execution (no compiler) as in 

Perl, Ruby 

 Mixed Model : Java 

 Untyped: No type checking (machine code) 
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Type Checking and Type 

Inference 
 Type Checking is the process of verifying fully typed 

programs 

• Given an operation and an operand of some type, 

determine whether the operation is allowed  

 Type Inference is the process of filling in missing type 

information 

• Given the type of operands, determine 

 the meaning of the operation 

 the type of the operation 

• OR, without variable declarations, infer type from 

the way the variable is used 

 The two are different, but are often used interchangeably 
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Issues in Typing 

 Does the language have a type system? 

 Untyped languages (e.g. assembly) have no type 

system at all 

 When is typing performed? 

 Static typing: At compile time 

 Dynamic typing: At runtime 

 How strictly are the rules enforced? 

 Strongly typed: No exceptions  

 Weakly typed: With well-defined exceptions 

 Type equivalence & subtyping 

 When are two types equivalent?  

• What does "equivalent" mean anyway? 

 When can one type replace another? 40 



Components of a Type System 

 Built-in types 

Rules for constructing new types 
 Where do we store type information? 

Rules for determining if two types are 

equivalent 

Rules for inferring the types of expressions 
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Component: Built-in Types 

 Integer 
 usual operations: standard arithmetic  

 Floating point 
 usual operations: standard arithmetic  

Character 
 character set generally ordered lexicographically 

 usual operations: (lexicographic) comparisons 

 Boolean 
 usual operations: not, and, or, xor  
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Component: Type Constructors 
 Arrays 

 array(I,T) denotes the type of an array with elements 

of type T, and index set I 

 multidimensional arrays are just arrays where T is 

also an array 

 operations: element access, array assignment, 

products  

 Strings 

 bitstrings, character strings 

 operations: concatenation, lexicographic comparison 

 Records (structs) 

 Groups of multiple objects of different types where the 

elements are given specific names. 
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Component: Type Constructors 

 Pointers 
 addresses 

 operations: arithmetic, dereferencing, referencing 

 issue: equivalency   

 Function types 
 A function such as "int add(real, int)" has type 

realintint  
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Component: Type Equivalence 
 

Name equivalence 
 Types are equiv only when they have the same name 

 Structural equivalence 
 Types are equiv when they have the same structure 

 Example 
 C uses structural equivalence for structs and name 

equivalence for arrays/pointers 
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Component: Type Equivalence 

 Type Coercion 
 If x is float, is x=3 acceptable? 

• Disallow 

• Allow and implicitly convert 3 to float 

• "Allow" but require programmer to explicitly convert 
3 to float 

 What should be allowed? 

• float to int ? 

• int to float ? 

• What if multiple coercions are possible? 

 Consider 3 + "4" … 
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Formalizing Types: Rules of 

Inference We have seen two examples of formal 

notation specifying parts of a compiler 
 Regular expressions (for the lexer) 

 Context-free grammars (for the parser) 

 

 The appropriate formalism for type 

checking is logical rules of inference 

├ e1 : int  

├ e2 : int 

├ e1 < e2 : boolean 
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Semantic Analysis Summary 

Compiler must do more than recognize 

whether a sentence belongs to the 

language 
 

 • Checks of all kinds  
• undefined variables, types 

• type errors that can be caught statically 

 • Store useful information for later phases 
• types of all expressions 
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                        Thank you 
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