

Semantic Analysis

0

Semantic Analysis

 Lexical analysis
 Detects inputs with illegal tokens

• e.g.: main$ ();

 Syntactic analysis
 Detects inputs with ill-formed parse trees

• e.g.: missing semicolons

 Semantic analysis
 Last “front end” analysis phase

 Catches all remaining errors

1

Semantic Analysis
 Source

code

2

Lexical Analysis

Syntactic Analysis

Semantic Analysis

Intermediate Code Gen

lexical
errors

syntax
errors

semantic
errors

tokens

AST

AST’

Beyond Syntax

3

foo(int a, char * s){ … }

int bar() {

 int f[3];

 int i, j, k;

 char *p;

 float k;

 foo(f[6], 10, j);

 break;

 i->val = 5;

 j = i + k;

 printf(“%s,%s.\n”,p,q);

 goto label23;

}

What’s wrong
with this code?

(Note: it parses
perfectly)

Beyond Syntax

4

foo(int a, char * s){ … }

int bar() {

 int f[3];

 int i, j, k;

 char *p;

 float k;

 foo(f[6], 10, j);

 break;

 i->val = 5;

 j = i + k;

 printf(“%s,%s.\n”,p,q);

 goto label23;

}

What’s wrong
with this code?

(Note: it parses
perfectly)

f[6] will
cause a run-
time failure

Goals of a Semantic Analyzer

 Compiler must do more than recognize whether a sentence belongs

to the language…

 • Find remaining errors that would make program invalid

• undefined variables, types

• type errors that can be caught statically

 • Figure out useful information for later phases

• types of all expressions

• data layout

 Terminology

 Static checks – done by the compiler

 Dynamic checks – done at run time

5

Kinds of Checks
Uniqueness checks

 Certain names must be unique

 Many languages require variable declarations

Flow-of-control checks
 Match control-flow operators with structures

 Example: break applies to innermost loop/switch

Type checks
 Check compatibility of operators and operands

Logical checks

 Program is syntactically and semantically correct,

but does not do the “correct” thing
6

Examples of Reported Errors

• Undeclared identifier

• Multiply declared identifier

• Index out of bounds

• Wrong number or types of args to call

• Incompatible types for operation

• Break statement outside switch/loop

• Goto with no label

7

Program Checking

Why do we care?

Obvious:
 Report mistakes to programmer

 Avoid bugs: f[6] will cause a run-time failure

 Help programmer verify intent

How do these checks help compilers?
 Allocate right amount of space for variables

 Select right machine operations

 Proper implementation of control structures
8

Can We Catch Everything?
• Try compiling this code:

 void main()

 {

 int i=21, j=42;

 printf(“Hello World\n”);

 printf(“Hello World, N=%d\n”);

 printf(“Hello World\n”, i, j);

 printf(“Hello World, N=%d\n”);

 printf(“Hello World, N=%d\n”);

 }

9

Inlined TypeChecker and

CodeGen
 You could type check and generate code

as part of semantic actions:

 expr : expr PLUS expr {

 if ($1.type == $3.type &&

 ($1.type == IntType ||

 $1.type == RealType)) $$.type = $1.type

 else error(“+ applied on wrong type!”);

 GenerateAdd($1, $3, $$);

 }

10

Problems

• Difficult to read

• Difficult to maintain

• Compiler must analyze program in order

parsed

• Instead … we split up tasks

11

Compiler ‘main program’

 void Compile() {

 AST tree = Parser(program);

 if (TypeCheck(tree))

 IR ir =

 GenIntermedCode(tree);

 EmitCode(ir);

 }

 }

12

Compile

Parser

getToken

readStream

AST

Typical Semantic Errors

• Multiple declarations: a variable should be

declared (in the same scope) at most once

• Undeclared variable: a variable should not be

used before being declared

• Type mismatch: type of the LHS of an

assignment should match the type of the RHS

• Wrong arguments: methods should be called

with the right number and types of arguments

13

A Sample Semantic Analyzer

 Works in two phases – traverses the AST created by the parser

1. For each scope in the program

 process the declarations

• add new entries to the symbol table and

• report any variables that are multiply declared

 process the statements

• find uses of undeclared variables, and

• update the "ID" nodes of the AST to point to the appropriate
symbol-table entry.

2. Process all of the statements in the program again

 use the symbol-table information to determine the type of each
expression, and to find type errors.

14

Scoping

 In most languages, the same name can be declared multiple times

 if its declarations occur in different scopes, and/or

 involve different kinds of names

 Java: can use the same name for

 a class

 field of the class

 a method of the class

 a local variable of the method

 class Test {

 int Test;

 void Test() { double Test; }

 }

15

Scoping: Overloading

 Java and C++ (but not in Pascal or C):
 can use the same name for more than one method

 as long as the number and/or types of parameters are

unique

int add(int a, int b);

float add(float a, float b);

16

Scoping: General Rules

 The scope rules of a language:

 Determine which declaration of a named object corresponds to

each use of the object

 Scoping rules map uses of objects to their declarations

 C++ and Java use static scoping:

 Mapping from uses to declarations at compile time

 C++ uses the "most closely nested" rule

• a use of variable x matches the declaration in the most

closely enclosing scope

• such that the declaration precedes the use

17

Scope levels
 Each function has two or more scopes:

 One for the function body

• Sometimes parameters are separate scope!

• (Not true in C)

 void f(int k) { // k is a parameter

 int k = 0; // also a local variable

 while (k) {

 int k = 1; // another local var, in a

loop

 }

 }

 Additional scopes in the function

• each for loop and

• each nested block (delimited by curly braces)

18

Checkpoint #1
 Match each use to its declaration, or say why it is

a use of an undeclared variable.

 int k=10, x=20;

 void foo(int k) {

 int a = x; int x = k; int b = x;

 while (...) {

 int x;

 if (x == k) {

 int k, y;

 k = y = x;

 }

 if (x == k) { int x = y; }

 }

 } 19

Dynamic Scoping

Not all languages use static scoping

 Lisp, APL, and Snobol use dynamic

scoping

Dynamic scoping:
 A use of a variable that has no corresponding

declaration in the same function corresponds to the

declaration in the most-recently-called still active

function

20

Example

 For example, consider the following code:

 int i = 1;

 void func() {

 cout << i << endl;

 }

 int main () {

 int i = 2;

 func();

 return 0;

 }
21

If C++ used
dynamic scoping,

this would print out
2, not 1

Checkpoint #2

 Assuming that dynamic scoping is used, what is

output by the following program?

 void main() { int x = 0; f1(); g(); f2(); }

 void f1() { int x = 10; g(); }

 void f2() { int x = 20; f1(); g(); }

 void g() { print(x); }

22

Keeping Track
Need a way to keep track of all identifier

types in scope

 {

 int i, n = …;

 for (i=0; i < n; i++)

 boolean b= …

 }

23

i  int
n  int

i  int
n  int
b  boolean

?

Symbol Tables

 Purpose:

 keep track of names declared in the program

 Symbol table entry:

 associates a name with a set of attributes, e.g.:

• kind of name (variable, class, field, method, …)

• type (int, float, …)

• nesting level

• mem location (where will it be found at runtime)

 Functions:

• Type Lookup(String id)

• Void Add(String id, Type binding)

 Bindings: name type pairs {a  string, b  int}

24

Environments

 Represents a set of mappings in the symbol table

 function f(a:int, b:int, c:int) =

 (print_int(a+c);

 let var j := a+b

 var a := “hello”

 in print(a); print_int(j)

 end;

 print_int(b)

)

25

0

1 = 0 + a  int

2 = 1 + j  int

Lookup
in 1

0

1

How Symbol Tables Work (1)
int x;

char y;

void p(void)

{ double x;

 …

 { int y[10];

 …

 }

 …

}

void q(void)

{ int y;

 …

}

main()

{ char x;

 …

}

26

How Symbol Tables Work (2)
int x;

char y;

void p(void)

{ double x;

 …

 { int y[10];

 …

 }

 …

}

void q(void)

{ int y;

 …

}

main()

{ char x;

 …

}

27

How Symbol Tables Work (3)
int x;

char y;

void p(void)

{ double x;

 …

 { int y[10];

 …

 }

 …

}

void q(void)

{ int y;

 …

}

main()

{ char x;

 …

}

28

How Symbol Tables Work (4)
int x;

char y;

void p(void)

{ double x;

 …

 { int y[10];

 …

 }

 …

}

void q(void)

{ int y;

 …

}

main()

{ char x;

 …

}

29

How Symbol Tables Work (5)
int x;

char y;

void p(void)

{ double x;

 …

 { int y[10];

 …

 }

 …

}

void q(void)

{ int y;

 …

}

main()

{ char x;

 …

}

30

How Symbol Tables Work (6)
int x;

char y;

void p(void)

{ double x;

 …

 { int y[10];

 …

 }

 …

}

void q(void)

{ int y;

 …

}

main()

{ char x;

 …

}

31

A Symbol Table Implementation
 Two structures: Hash table, Scope Stack

 Symbol = foo

 Hash(foo) = i

32

i x foo bar

Symbol table

Enter/Exit Scope

We also need a stack to keep track of the

“nesting level” as we traverse the tree…

33

y \

x \

x

y

x

y

x

a
a \

x

X

Scope
change

Variables vs. Types

Often, compilers maintain separate symbol

tables for Types vs. Variables/Functions

 Lecture Checkpoint:

  Scopes

  Types

34

Types

 What is a type?

 The notion varies from language to language

 Consensus

 A set of values

 A set of operations allowed on those values

 Certain operations are legal for each type

 It doesn’t make sense to add a function pointer and
an integer in C

 It does make sense to add two integers

 But both have the same assembly language
implementation!

35

Type Systems

 A language’s type system specifies which

operations are valid for which types

 The goal of type checking is to ensure that

operations are used with the correct types

 Enforces intended interpretation of values

 Type systems provide a concise formalization of

the semantic checking rules

36

Why Do We Need Type

Systems?
Consider the assembly language fragment

 addi $r1, $r2, $r3

What are the types of $r1, $r2, $r3?

37

Type Checking Overview

 Four kinds of languages:

 Statically typed: All or almost all checking of types is

done as part of compilation

 Dynamically typed: Almost all checking of types is

done as part of program execution (no compiler) as in

Perl, Ruby

 Mixed Model : Java

 Untyped: No type checking (machine code)

38

Type Checking and Type

Inference
 Type Checking is the process of verifying fully typed

programs

• Given an operation and an operand of some type,

determine whether the operation is allowed

 Type Inference is the process of filling in missing type

information

• Given the type of operands, determine

 the meaning of the operation

 the type of the operation

• OR, without variable declarations, infer type from

the way the variable is used

 The two are different, but are often used interchangeably
39

Issues in Typing

 Does the language have a type system?

 Untyped languages (e.g. assembly) have no type

system at all

 When is typing performed?

 Static typing: At compile time

 Dynamic typing: At runtime

 How strictly are the rules enforced?

 Strongly typed: No exceptions

 Weakly typed: With well-defined exceptions

 Type equivalence & subtyping

 When are two types equivalent?

• What does "equivalent" mean anyway?

 When can one type replace another? 40

Components of a Type System

 Built-in types

Rules for constructing new types
 Where do we store type information?

Rules for determining if two types are

equivalent

Rules for inferring the types of expressions

41

Component: Built-in Types

 Integer
 usual operations: standard arithmetic

 Floating point
 usual operations: standard arithmetic

Character
 character set generally ordered lexicographically

 usual operations: (lexicographic) comparisons

 Boolean
 usual operations: not, and, or, xor

 42

Component: Type Constructors
 Arrays

 array(I,T) denotes the type of an array with elements

of type T, and index set I

 multidimensional arrays are just arrays where T is

also an array

 operations: element access, array assignment,

products

 Strings

 bitstrings, character strings

 operations: concatenation, lexicographic comparison

 Records (structs)

 Groups of multiple objects of different types where the

elements are given specific names.
43

Component: Type Constructors

 Pointers
 addresses

 operations: arithmetic, dereferencing, referencing

 issue: equivalency

 Function types
 A function such as "int add(real, int)" has type

realintint

44

Component: Type Equivalence

Name equivalence
 Types are equiv only when they have the same name

 Structural equivalence
 Types are equiv when they have the same structure

 Example
 C uses structural equivalence for structs and name

equivalence for arrays/pointers

45

Component: Type Equivalence

 Type Coercion
 If x is float, is x=3 acceptable?

• Disallow

• Allow and implicitly convert 3 to float

• "Allow" but require programmer to explicitly convert
3 to float

 What should be allowed?

• float to int ?

• int to float ?

• What if multiple coercions are possible?

 Consider 3 + "4" …

46

Formalizing Types: Rules of

Inference We have seen two examples of formal

notation specifying parts of a compiler
 Regular expressions (for the lexer)

 Context-free grammars (for the parser)

 The appropriate formalism for type

checking is logical rules of inference

├ e1 : int

├ e2 : int

├ e1 < e2 : boolean

47

Semantic Analysis Summary

Compiler must do more than recognize

whether a sentence belongs to the

language

 • Checks of all kinds
• undefined variables, types

• type errors that can be caught statically

 • Store useful information for later phases
• types of all expressions

48

 Thank you

49

