

Semantic Analysis

0

Semantic Analysis

 Lexical analysis
 Detects inputs with illegal tokens

• e.g.: main$ ();

 Syntactic analysis
 Detects inputs with ill-formed parse trees

• e.g.: missing semicolons

 Semantic analysis
 Last “front end” analysis phase

 Catches all remaining errors

1

Semantic Analysis
 Source

code

2

Lexical Analysis

Syntactic Analysis

Semantic Analysis

Intermediate Code Gen

lexical
errors

syntax
errors

semantic
errors

tokens

AST

AST’

Beyond Syntax

3

foo(int a, char * s){ … }

int bar() {

 int f[3];

 int i, j, k;

 char *p;

 float k;

 foo(f[6], 10, j);

 break;

 i->val = 5;

 j = i + k;

 printf(“%s,%s.\n”,p,q);

 goto label23;

}

What’s wrong
with this code?

(Note: it parses
perfectly)

Beyond Syntax

4

foo(int a, char * s){ … }

int bar() {

 int f[3];

 int i, j, k;

 char *p;

 float k;

 foo(f[6], 10, j);

 break;

 i->val = 5;

 j = i + k;

 printf(“%s,%s.\n”,p,q);

 goto label23;

}

What’s wrong
with this code?

(Note: it parses
perfectly)

f[6] will
cause a run-
time failure

Goals of a Semantic Analyzer

 Compiler must do more than recognize whether a sentence belongs

to the language…

 • Find remaining errors that would make program invalid

• undefined variables, types

• type errors that can be caught statically

 • Figure out useful information for later phases

• types of all expressions

• data layout

 Terminology

 Static checks – done by the compiler

 Dynamic checks – done at run time

5

Kinds of Checks
Uniqueness checks

 Certain names must be unique

 Many languages require variable declarations

Flow-of-control checks
 Match control-flow operators with structures

 Example: break applies to innermost loop/switch

Type checks
 Check compatibility of operators and operands

Logical checks

 Program is syntactically and semantically correct,

but does not do the “correct” thing
6

Examples of Reported Errors

• Undeclared identifier

• Multiply declared identifier

• Index out of bounds

• Wrong number or types of args to call

• Incompatible types for operation

• Break statement outside switch/loop

• Goto with no label

7

Program Checking

Why do we care?

Obvious:
 Report mistakes to programmer

 Avoid bugs: f[6] will cause a run-time failure

 Help programmer verify intent

How do these checks help compilers?
 Allocate right amount of space for variables

 Select right machine operations

 Proper implementation of control structures
8

Can We Catch Everything?
• Try compiling this code:

 void main()

 {

 int i=21, j=42;

 printf(“Hello World\n”);

 printf(“Hello World, N=%d\n”);

 printf(“Hello World\n”, i, j);

 printf(“Hello World, N=%d\n”);

 printf(“Hello World, N=%d\n”);

 }

9

Inlined TypeChecker and

CodeGen
 You could type check and generate code

as part of semantic actions:

 expr : expr PLUS expr {

 if ($1.type == $3.type &&

 ($1.type == IntType ||

 $1.type == RealType)) $$.type = $1.type

 else error(“+ applied on wrong type!”);

 GenerateAdd($1, $3, $$);

 }

10

Problems

• Difficult to read

• Difficult to maintain

• Compiler must analyze program in order

parsed

• Instead … we split up tasks

11

Compiler ‘main program’

 void Compile() {

 AST tree = Parser(program);

 if (TypeCheck(tree))

 IR ir =

 GenIntermedCode(tree);

 EmitCode(ir);

 }

 }

12

Compile

Parser

getToken

readStream

AST

Typical Semantic Errors

• Multiple declarations: a variable should be

declared (in the same scope) at most once

• Undeclared variable: a variable should not be

used before being declared

• Type mismatch: type of the LHS of an

assignment should match the type of the RHS

• Wrong arguments: methods should be called

with the right number and types of arguments

13

A Sample Semantic Analyzer

 Works in two phases – traverses the AST created by the parser

1. For each scope in the program

 process the declarations

• add new entries to the symbol table and

• report any variables that are multiply declared

 process the statements

• find uses of undeclared variables, and

• update the "ID" nodes of the AST to point to the appropriate
symbol-table entry.

2. Process all of the statements in the program again

 use the symbol-table information to determine the type of each
expression, and to find type errors.

14

Scoping

 In most languages, the same name can be declared multiple times

 if its declarations occur in different scopes, and/or

 involve different kinds of names

 Java: can use the same name for

 a class

 field of the class

 a method of the class

 a local variable of the method

 class Test {

 int Test;

 void Test() { double Test; }

 }

15

Scoping: Overloading

 Java and C++ (but not in Pascal or C):
 can use the same name for more than one method

 as long as the number and/or types of parameters are

unique

int add(int a, int b);

float add(float a, float b);

16

Scoping: General Rules

 The scope rules of a language:

 Determine which declaration of a named object corresponds to

each use of the object

 Scoping rules map uses of objects to their declarations

 C++ and Java use static scoping:

 Mapping from uses to declarations at compile time

 C++ uses the "most closely nested" rule

• a use of variable x matches the declaration in the most

closely enclosing scope

• such that the declaration precedes the use

17

Scope levels
 Each function has two or more scopes:

 One for the function body

• Sometimes parameters are separate scope!

• (Not true in C)

 void f(int k) { // k is a parameter

 int k = 0; // also a local variable

 while (k) {

 int k = 1; // another local var, in a

loop

 }

 }

 Additional scopes in the function

• each for loop and

• each nested block (delimited by curly braces)

18

Checkpoint #1
 Match each use to its declaration, or say why it is

a use of an undeclared variable.

 int k=10, x=20;

 void foo(int k) {

 int a = x; int x = k; int b = x;

 while (...) {

 int x;

 if (x == k) {

 int k, y;

 k = y = x;

 }

 if (x == k) { int x = y; }

 }

 } 19

Dynamic Scoping

Not all languages use static scoping

 Lisp, APL, and Snobol use dynamic

scoping

Dynamic scoping:
 A use of a variable that has no corresponding

declaration in the same function corresponds to the

declaration in the most-recently-called still active

function

20

Example

 For example, consider the following code:

 int i = 1;

 void func() {

 cout << i << endl;

 }

 int main () {

 int i = 2;

 func();

 return 0;

 }
21

If C++ used
dynamic scoping,

this would print out
2, not 1

Checkpoint #2

 Assuming that dynamic scoping is used, what is

output by the following program?

 void main() { int x = 0; f1(); g(); f2(); }

 void f1() { int x = 10; g(); }

 void f2() { int x = 20; f1(); g(); }

 void g() { print(x); }

22

Keeping Track
Need a way to keep track of all identifier

types in scope

 {

 int i, n = …;

 for (i=0; i < n; i++)

 boolean b= …

 }

23

i int
n int

i int
n int
b boolean

?

Symbol Tables

 Purpose:

 keep track of names declared in the program

 Symbol table entry:

 associates a name with a set of attributes, e.g.:

• kind of name (variable, class, field, method, …)

• type (int, float, …)

• nesting level

• mem location (where will it be found at runtime)

 Functions:

• Type Lookup(String id)

• Void Add(String id, Type binding)

 Bindings: name type pairs {a string, b int}

24

Environments

 Represents a set of mappings in the symbol table

 function f(a:int, b:int, c:int) =

 (print_int(a+c);

 let var j := a+b

 var a := “hello”

 in print(a); print_int(j)

 end;

 print_int(b)

)

25

0

1 = 0 + a int

2 = 1 + j int

Lookup
in 1

0

1

How Symbol Tables Work (1)
int x;

char y;

void p(void)

{ double x;

 …

 { int y[10];

 …

 }

 …

}

void q(void)

{ int y;

 …

}

main()

{ char x;

 …

}

26

How Symbol Tables Work (2)
int x;

char y;

void p(void)

{ double x;

 …

 { int y[10];

 …

 }

 …

}

void q(void)

{ int y;

 …

}

main()

{ char x;

 …

}

27

How Symbol Tables Work (3)
int x;

char y;

void p(void)

{ double x;

 …

 { int y[10];

 …

 }

 …

}

void q(void)

{ int y;

 …

}

main()

{ char x;

 …

}

28

How Symbol Tables Work (4)
int x;

char y;

void p(void)

{ double x;

 …

 { int y[10];

 …

 }

 …

}

void q(void)

{ int y;

 …

}

main()

{ char x;

 …

}

29

How Symbol Tables Work (5)
int x;

char y;

void p(void)

{ double x;

 …

 { int y[10];

 …

 }

 …

}

void q(void)

{ int y;

 …

}

main()

{ char x;

 …

}

30

How Symbol Tables Work (6)
int x;

char y;

void p(void)

{ double x;

 …

 { int y[10];

 …

 }

 …

}

void q(void)

{ int y;

 …

}

main()

{ char x;

 …

}

31

A Symbol Table Implementation
 Two structures: Hash table, Scope Stack

 Symbol = foo

 Hash(foo) = i

32

i x foo bar

Symbol table

Enter/Exit Scope

We also need a stack to keep track of the

“nesting level” as we traverse the tree…

33

y \

x \

x

y

x

y

x

a
a \

x

X

Scope
change

Variables vs. Types

Often, compilers maintain separate symbol

tables for Types vs. Variables/Functions

 Lecture Checkpoint:

 Scopes

 Types

34

Types

 What is a type?

 The notion varies from language to language

 Consensus

 A set of values

 A set of operations allowed on those values

 Certain operations are legal for each type

 It doesn’t make sense to add a function pointer and
an integer in C

 It does make sense to add two integers

 But both have the same assembly language
implementation!

35

Type Systems

 A language’s type system specifies which

operations are valid for which types

 The goal of type checking is to ensure that

operations are used with the correct types

 Enforces intended interpretation of values

 Type systems provide a concise formalization of

the semantic checking rules

36

Why Do We Need Type

Systems?
Consider the assembly language fragment

 addi $r1, $r2, $r3

What are the types of $r1, $r2, $r3?

37

Type Checking Overview

 Four kinds of languages:

 Statically typed: All or almost all checking of types is

done as part of compilation

 Dynamically typed: Almost all checking of types is

done as part of program execution (no compiler) as in

Perl, Ruby

 Mixed Model : Java

 Untyped: No type checking (machine code)

38

Type Checking and Type

Inference
 Type Checking is the process of verifying fully typed

programs

• Given an operation and an operand of some type,

determine whether the operation is allowed

 Type Inference is the process of filling in missing type

information

• Given the type of operands, determine

 the meaning of the operation

 the type of the operation

• OR, without variable declarations, infer type from

the way the variable is used

 The two are different, but are often used interchangeably
39

Issues in Typing

 Does the language have a type system?

 Untyped languages (e.g. assembly) have no type

system at all

 When is typing performed?

 Static typing: At compile time

 Dynamic typing: At runtime

 How strictly are the rules enforced?

 Strongly typed: No exceptions

 Weakly typed: With well-defined exceptions

 Type equivalence & subtyping

 When are two types equivalent?

• What does "equivalent" mean anyway?

 When can one type replace another? 40

Components of a Type System

 Built-in types

Rules for constructing new types
 Where do we store type information?

Rules for determining if two types are

equivalent

Rules for inferring the types of expressions

41

Component: Built-in Types

 Integer
 usual operations: standard arithmetic

 Floating point
 usual operations: standard arithmetic

Character
 character set generally ordered lexicographically

 usual operations: (lexicographic) comparisons

 Boolean
 usual operations: not, and, or, xor

 42

Component: Type Constructors
 Arrays

 array(I,T) denotes the type of an array with elements

of type T, and index set I

 multidimensional arrays are just arrays where T is

also an array

 operations: element access, array assignment,

products

 Strings

 bitstrings, character strings

 operations: concatenation, lexicographic comparison

 Records (structs)

 Groups of multiple objects of different types where the

elements are given specific names.
43

Component: Type Constructors

 Pointers
 addresses

 operations: arithmetic, dereferencing, referencing

 issue: equivalency

 Function types
 A function such as "int add(real, int)" has type

realintint

44

Component: Type Equivalence

Name equivalence
 Types are equiv only when they have the same name

 Structural equivalence
 Types are equiv when they have the same structure

 Example
 C uses structural equivalence for structs and name

equivalence for arrays/pointers

45

Component: Type Equivalence

 Type Coercion
 If x is float, is x=3 acceptable?

• Disallow

• Allow and implicitly convert 3 to float

• "Allow" but require programmer to explicitly convert
3 to float

 What should be allowed?

• float to int ?

• int to float ?

• What if multiple coercions are possible?

 Consider 3 + "4" …

46

Formalizing Types: Rules of

Inference We have seen two examples of formal

notation specifying parts of a compiler
 Regular expressions (for the lexer)

 Context-free grammars (for the parser)

 The appropriate formalism for type

checking is logical rules of inference

├ e1 : int

├ e2 : int

├ e1 < e2 : boolean

47

Semantic Analysis Summary

Compiler must do more than recognize

whether a sentence belongs to the

language

 • Checks of all kinds
• undefined variables, types

• type errors that can be caught statically

 • Store useful information for later phases
• types of all expressions

48

 Thank you

49

