
Compilers
Lab 9

Piotr Bªaszy«ski

26th April 2022

Tasks (explained later in the document):

� add compilation of loop statements,

� grammar rules,

� generate the resulting code,

Loops can be implemented using conditional jump and counter. The counter is
a variable, the value of this variable should be modi�ed at the appropriate moment
(end of the loop, beginning of the loop (except for the �rst iteration)).

Input grammar rules for a loop statement (similar to a loop in C, all elements
required):

for_expr

:for_begin code_block

{gen_end_label_and_jump ();}

for_begin

:FOR '(' init_expr ';' cond_expr ';' inc_expr ')

' {gen_condition_and_jump ();}

For the following loop code:

for (i = 0 ; i < 10 ; ++i)

{

z = z + i ;

}

z = z*3;

1

Generate the following code (symbolically):

i=0;

goto LBL5

LBL6:

++i;

LBL5:

if(i >=10)

goto LBL7:

{

z = z + i ;

}

goto LBL6:

LBL7:

z = z*3;

Thanks to the above construction, there is no need to remember the code of con-
ditional and increment expression (the price for such simpli�cation is adding an
additional label). The labels are numbered in the order they appear (the jump to
label LBL5 appears �rst). The labels (in the example LBL6 and LBL7) should be
stored in the label stack. In the semantic action called after the whole structure
(including the code block) of the loop is matched, the labels should be removed
and the instruction to jump to the second one should be generated, and the �rst
label should be placed in the code (with a colon).

2

Generated assembler code (mnemonics):

li $t0 ,0

sw $t0 ,x

b LBL5

LBL6:

#these 4 lines can be written easier (not necessary)

lw $t0 , i

li $t1 , 1

add $t0 , $t0 , $t1

sw $t0 , i

LBL5:

lw $t2 , i

li $t3 , 10

bge $t2 , $t3 , LBL7

lw $t0 , z

lw $t1 , i

add $t0 , $t0 , $t1

sw $t0 , result1

lw $t0 , result1

sw $t0 , z

b LBL6

LBL7:

lw $t0 , z

li $t1 , 3

mul $t0 , $t0 , $t1

sw $t0 , result2

lw $t0 , result2

sw $t0 , z

Note, that this is one possible method of generating code for a loop statement;
there are even more possible modi�cations than for conditional statements. For
example, you can change the position of jumps, store other values.

3

