
Compilers
Lab 8

Piotr Bªaszy«ski

20th April 2022

Tasks (explained later in the document):

� add support for �oating point numbers,

� generate computation code,

� conversion or error reporting,

The handling of �oating-point numbers in MIPS is implemented using a
di�erent register and instruction set than their integer counterparts. In addition,
the implementation of references to �oating-point constants should be simpli�ed
by treating them as variables. The �oating-point registers equivalent to $t0− $t7
are $f0 − $f31 - a single register is used to store �oat numbers, a pair of regi-
sters is used to store double numbers. The requirement in the compiler applies
only to numbers of type �oat, so only instructions concerning them will be descri-
bed further. To load the value of a variable into a register, use the instruction:
l.s register, variable. To store the value from a register into a variable, use the
instruction: s.s register, variable. To perform arithmetic operations operations:

� add.s register_result, register_arg1, register_arg2 - adding,

� sub.s register_result, register_arg1, register_arg2 - subtraction,

� mul.s register_result, register_arg1, register_arg2 - multiplication,

� div.s register_result, register_arg1, register_arg2 - dividing,

For example code that adds two �oating point numbers:

z=3.14+6.28;

y=3.14+5.12;

1

It should be generated (a constant may occur once or more than once in the data
section, if it occurs only once then all its occurrences are replaced with the same
identi�er):

.data

z: .float 0

float_var1: .float 3.14

float_var2: .float 6.28

y: .float 0

float_var3: .float 5.12

tmp1: .float 0

tmp2: .float 0

.text

l.s $f0 , float_var1

l.s $f1 , float_var2

add.s $f0 , $f0 , $f1

s.s $f0 , tmp1

l.s $f0 , tmp1

s.s $f0 , z

l.s $f0 , float_var1

l.s $f1 , float_var3

add.s $f0 , $f0 , $f1

s.s $f0 , tmp2

l.s $f0 , tmp2

s.s $f0 , y

In case the language assumes the ability to convert between variables of �oating
point and integer types, it is necessary to load the value into a register and then
call the conversion - conversions in both directions are performed on the �oating
point register.
Conversion from integer to �oating point value:

.text

li $t0 , 10

mtc1 $t0 , $f0

cvt.s.w $f1 , $f0

2

Conversion from �oating point to integer value:

.data

float_var1: .float 3.14

.text

li $t0 , 10

mtc1 $t0 , $f0

cvt.s.w $f1 , $f0

l.s $f2 , float_var1

add.s $f1 , $f1 , $f2

cvt.w.s $f0 , $f1

mfc1 $t0 , $f0

3

