
Compilers
Lab 5

Piotr Bªaszy«ski

23rd March 2022

Tasks (explained later in the document):

� if not already there, add compile option -std=c++11 to Make�le (where we
use g++),

� prepare a rule for the non-terminal symbol representing the assignment (if
we have not done so previously),

� create a symbol array (store all identi�ers in it),

� generate temporary variables to store the results of triples,

� for each triplet generate 4 lines of assembly code and store them in a vector,

� write the code that writes the lines from the vector to the �le yyout, call this
code after yyparse,

� after yyparse write the symbol array to the �le symbols.txt,

� save the symbols from the symbol array before the code in the data block.

The symbol array contains all identi�ers, including identi�ers for temporary va-
riables generated by the compiler. It should be a hash table (in C++ std :: map).
The symbol array allows you to store and search for variable information based on
the identi�er: variable type, storage location, array size if any. It should be saved
to the �le symbols.txt at the end of the compiler run.

Temporary variables will be used to store intermediate calculation results in
memory. Subsequent variables should be numbered. It should not be possible to
use a variable with the same name as a temporary variable in normal code.

1

The example code generated for three is of the form:

li $t0 , 27

lw $t1 , x

sub $t0 , $t0 , $t1

sw $t0 , result15

The registers $t0 − $t7 are so-called temporary registers. You can insert a value
into such a register using the (for now) li or lw instruction. The li instruction in-
serts a numeric (direct) value. The lw instruction inserts a value from the address
called by the variable name. The sub instruction performs subtraction, the add
instruction performs addition, the mul instruction performs multiplication, the
div instruction performs division, and the sw instruction inserts a value from a
register into a memory cell. For arithmetic operations, the operation is performed
on the last two registers and the result is stored in the �rst register.
The generalized code generated for three is of the form (underscores indicate spaces
to be �lled):

l_ $t0 , __

l_ $t1 , __

___ $t0 , $t0 , $t1

sw $t0 , ____

The code for the assignment can be shortened (I leave the shortened form to you
to invent).
The header part (the data block) will be used to reserve space for variables

(in the future, also constants). The data block starts with the .data directive
Data block format:

name: type value

Przykªady:

x: .word 0

arr: .space 40

caption: .asciiz "Screen caption"

f: .float 3.14

The code begins with the .text directive. A comment in assembler code is denoted
by ′#′.

2

Example code for the expression (x = 3; z = 5 + x ∗ 2;):

.data

x: .word 0

z: .word 0

result1: .word 0

result2: .word 0

.text

li $t0 , 3

sw $t0 , x

lw $t0 , x

li $t1 , 2

mul $t0 , $t0 , $t1

sw $t0 , result1

li $t0 , 5

lw $t1 , result1

add $t0 , $t0 , $t1

sw $t0 , result2

lw $t0 , result2

sw $t0 , z

3

