Compilers
Lab 3

Piotr Blaszynski
16th March 2022

Tasks (explained later in the document):

prepare a grammar for a single expression consisting of variables, numbers
and operators (file def.y - example grammar in the z5 directory),

pass the semantic values of identifiers and numbers (integer and float) from
the lexical analyzer to the syntactic analyzer,

implement the main function (only one version in def.y), with support for
call parameters (argc, argv),

write the semantic values of individual identifiers and numbers and operators
into a file in matching order,

test the function for expressions consisting of several (8-10) elements.

The language grammar rules processed by the bison generator consist of:

The name of a non-terminal symbol,
a colon character,

definition consisting of terminal and non-terminal symbols.

Alternative definitions are separated from each other by a vertical dash () and
the last alternative (for order) should be followed by a semicolon (’;’). The non-

Y

terminal symbol at the beginning of the grammar is chosen as the starting symbol,
unless we indicate it explicitly (the %start directive). The order of the other rules
is not important, but it is useful for the rules to be written in an orderly fashion.
To define rules as terminal symbols you should use previously defined tokens defi-
ned in the first section and single character symbols (in apostrophes). After each

definition (also after each part of it) you can write an action (semantic) in the
form of C/C++ code, which will be called if the rule is matched.

Example definition of non-terminal symbols factor and component:

component
:component ’x’ factor {printf (" *,\n");}
| component ’/’ factor {printf (",/u\n");}
| factor {printf ("skladnik \n") ;}
factor
)] {printf ("variable\n") ;}
| LC {printf ("number\n") ;?
|>(> exp)’ {printf ("parnetheses\n")
3

To pass semantic values from the lexical analyzer to the syntactic analyzer, use
the yylval union (its default name in code generated by flex). The fields of this
union are defined in the file for bison (e.g. def.y). The lexeme values for numbers

and identifiers (for other lexemes as well) are stored in the yytext variable.
An example definition of a union for passing semantic values, tokens whose seman-

tic value will be passed must have the specified type:

%union

{
char *xtext;
int ival;

};

%token <text> ID

%token <ival> LC

In the syntactic analyzer, a semantic value can be referred to using the symbol
$, and a number. The number indicates the place of the lexeme, whose semantic
value we want to obtain, in the rule (so it is usually $1, but e.g. in case of array

declarations it can be $2 or $3)
An example reference to the semantic value of an identifier.

factor
:ID {printf ("id: %s\n", $1);}

