
Compilers
Lab 3

Piotr Bªaszy«ski

16th March 2022

Tasks (explained later in the document):

� prepare a grammar for a single expression consisting of variables, numbers
and operators (�le def.y - example grammar in the z5 directory),

� pass the semantic values of identi�ers and numbers (integer and �oat) from
the lexical analyzer to the syntactic analyzer,

� implement the main function (only one version in def.y), with support for
call parameters (argc, argv),

� write the semantic values of individual identi�ers and numbers and operators
into a �le in matching order,

� test the function for expressions consisting of several (8-10) elements.

The language grammar rules processed by the bison generator consist of:

� The name of a non-terminal symbol,

� a colon character,

� de�nition consisting of terminal and non-terminal symbols.

Alternative de�nitions are separated from each other by a vertical dash ('|') and
the last alternative (for order) should be followed by a semicolon (';'). The non-
terminal symbol at the beginning of the grammar is chosen as the starting symbol,
unless we indicate it explicitly (the %start directive). The order of the other rules
is not important, but it is useful for the rules to be written in an orderly fashion.
To de�ne rules as terminal symbols you should use previously de�ned tokens de�-
ned in the �rst section and single character symbols (in apostrophes). After each

1

de�nition (also after each part of it) you can write an action (semantic) in the
form of C/C++ code, which will be called if the rule is matched.

Example de�nition of non-terminal symbols factor and component:

component

:component '*' factor {printf(" * \n");}

|component '/' factor {printf(" / \n");}

|factor {printf("skladnik \n");}

;

factor

:ID {printf("variable\n");}

|LC {printf("number\n");}

|'(' exp ')' {printf("parnetheses\n")

;}

;

To pass semantic values from the lexical analyzer to the syntactic analyzer, use
the yylval union (its default name in code generated by �ex). The �elds of this
union are de�ned in the �le for bison (e.g. def.y). The lexeme values for numbers
and identi�ers (for other lexemes as well) are stored in the yytext variable.
An example de�nition of a union for passing semantic values, tokens whose seman-
tic value will be passed must have the speci�ed type:

%union

{

char *text;

int ival;

};

%token <text > ID

%token <ival > LC

In the syntactic analyzer, a semantic value can be referred to using the symbol
$, and a number. The number indicates the place of the lexeme, whose semantic
value we want to obtain, in the rule (so it is usually $1, but e.g. in case of array
declarations it can be $2 or $3)
An example reference to the semantic value of an identi�er.

factor

:ID {printf("id: %s\n", $1);}

;

2

