
Compilers
Lab 2

Piotr Bªaszy«ski

9th March 2022

Tasks (explained later in the document):

� prepare the list of lexemes in the lexical analyzer (�le zX.l)

� prepare the list of tokens in the initial part of the syntactic analyzer (�le
def.y),

� in the lexical analyzer add return tokens - for single symbols it is the ASCII
code of the symbol, for keywords, numbers, identi�ers and multi-character
symbols it is the token code.

The lexical analyzer description �le consists of 3 parts separated by a double sign
'%'. The �rst part is the header part - it allows you to attach header �les, prepare
prototypes of functions called in other parts and write de�nitions for �ex. The
second part contains text processing rules consisting of a pattern and an action
which is executed if the pattern is matched. In this part (action) we can also return
the token code to the syntax analyzer. The third part is the code in C language
copied directly to the result �le in C.
Basic rule elements: The '[' and ']' characters (square brackets) allow you to

write a rule for one element of a regular expression, if such a rule is followed by
a '+' character then the rule must occur in the matched text at the appropriate
place at least once (it may repeat multiple times, 1-), if the next character is a '*'
then the rule may occur multiple times but need not (0-). At the end of the list of
rules there should be a dot ('.'), which in this context means no previous matching
- which causes an error (unknown lexeme).
The syntax analyzer description �le is also built with 3 sections: header, rules

and actions (here called semantic - we will not use them yet at this stage), code
in C/C++. At this stage we only need to de�ne tokens (examples below) for all

1



keywords, numbers, identi�ers and multi-character symbols (for single characters
the token code is its ASCII code).
After de�ning tokens and parsing the def.y �le with bison, we can (among other

things, bison will generate a header �le with numeric token codes) return token
codes from within the lexical analyzer. Examples can be found in directories z4,
z5 and z6.

De�nition of a token without specifying a type:

%token LEQ

De�nition of multiple tokens without specifying a type:

%token LEQ GEQ EQ

%token FOR INT DOUBLE

De�nition of a token with type speci�cation:

%token <text > ID

Return of a token (whole rules with actions in basic version) from lexical analyzer:

\= {return '=';}

\<\= {return LEQ;}

"int" {return INT;}

[A-Za-z_][A-Za -z0 -9_]* {return ID;}

2


