
Compilers
Lab 1

Piotr Bªaszy«ski

3rd March 2022

Tasks:

� download all the example �les: http://detox.wi.ps.pl/pb/tk/en/all.

zip

� test compile and run code from directories z1, z2, z3 (instructions at the
end),

� run it by passing inX.txt as an argument, the �les are in the corresponding
directories,

� additionally test the operation of the analyzer in the interactive mode,

� modify the input �les in z2 so that they both "compile", or modify the
analyzer �le (z2.l), this is a task to become familiar with the lexical analy-
zer framework, check which lexemes are supported by the presented lexical
analyzer and remove the unsupported elements from the source �le,

� become familiar with the contents of the Make�le in z3,

� download the MIPS processor emulator MARS http://courses.missouristate.
edu/KenVollmar/mars/download.htm (alternatively QtSpim), run the emu-
lator through a java virtual machine (example at the end),

� run the example program http://courses.missouristate.edu/KenVollmar/

mars/CCSC-CP%20material/row-major.asm

Homework: Develop a own language project. It is easier to make a compiler of
a traditional language, you should avoid constructions from esoteric languages. In
addition to the constructs themselves, please prepare some program �les in your
language (testing the constructs below). Required constructions (grade - require-
ments):

1

http://detox.wi.ps.pl/pb/tk/en/all.zip
http://detox.wi.ps.pl/pb/tk/en/all.zip
http://courses.missouristate.edu/KenVollmar/mars/download.htm
http://courses.missouristate.edu/KenVollmar/mars/download.htm
http://courses.missouristate.edu/KenVollmar/mars/CCSC-CP%20material/row-major.asm
http://courses.missouristate.edu/KenVollmar/mars/CCSC-CP%20material/row-major.asm

� 3.0 - int and double types - constants (literals) and variables of these types,
arithmetic expressions (=, +, -, *, /), simple if (without else and at most
one nesting), writing int and double, typing int and double from the console

� 3.5 - for loop (higher grade) or while, string type (only output, no other
operations on this type),

� 4.0 - for loop (no need for while), one-dimensional arrays, complex if (lots of
nesting) with else,

� 4.5 - multidimensional arrays,

� 5.0 - dynamic allocation of one-dimensional arrays or simple functions (proce-
dures without parameters) (or functions with parameters and return value),

I am checking the assignment in a week, I am accepting electronic version only.
You can send email earlier (pblaszynski@zut.edu.pl).
Method of calling compiler in the �rst two directories:

flex zX.l #the file lex.yy.c is created

gcc -c lex.yy.c #the file lex.yy.o is created

gcc lex.yy.o -o my_compiler_name -ll # my_compiler_name

file is created

Running:

./ name_my_compiler #running in interactive mode

./ name_my_compiler < in1.txt #Starting with passing the

file in1.txt on stdin

./ name_my_compiler in1.txt #Starting with feeding in1.

txt in argv [1] (needs to be handled in main function)

We end the interactive mode only by pressing:

Ctrl+D

We use the Make�le by typing:

make

Calling bison (we use Make�le, but you need to know what is going on in it):

bison -d def.y #def.tab.c and def.tab.h (in C++ version

def.tab.cc and def.tab.hh) are created

gcc -c def.tab.c #the file def.tab.o is created

gcc lex.yy.o def.tab.o -o name_my_compiler -ll # file

name_my_compiler is created

2

Example of running MARS emulator (you can also run in graphical environment,
you need to set �le permissions for execution beforehand - chmod +x Mars4_5.jar
):

java -jar Mars4_5.jar

3

